The publication of the journal is supported by
SIA "P&M-Invest" Ltd and INEOS RAS
Volume # 6(43), November - December 2005 — "Fluorine containing polymer materials based on unsaturated acids modified according to ester fragment and their practical application "

Fluorine Notes, 2005, 43, 1-2

FLUORINE CONTAINING POLYMER MATERIALS BASED ON UNSATURATED ACIDS MODIFIED ACCORDING TO ESTER FRAGMENT AND THEIR PRACTICAL APPLICATION
 

V.B. No a,  G.G. Furin b

a  PIKO Enterprise LLC , 8 Galterina str., Perm City Russia 614113.

b  Novosibirsk Institute of Organic Chemistry named after N.N. Vorojtsov SD of RAS,  9 Academic Lavtrentiev avenue, Novosibirsk, 630090, Russia E-mail : furin@nioch.nsc.ru

     Here we discuss the approach to the fluorine modification of acrylates and maleates ester fragment using partly fluorinated alcohols and acrylic, methacrylic and maleic acids' derivatives to synthesize them. We also discuss the reactions involving multiply bond and carboxylic group of maleic acid fluorine containing mono-ester and acrylic acid esters.  We analyze acrylates polymerization processes their co-polymerization with other olefines,  and also fluorine containing polymers' characteristics. We also take a look at practical application fields of such polymer materials. 

Contents

      Introduction.

1. Approaches of fluorine modified ester fragment acrylates synthesis.

2. Maleic acid fluorine containing mono- and diesters obtaining.

3. The synthesis of sulfoacids derivatives based on fluorine containing acrylic and maleic acids esters and their salts. 

4. Polymerization and co-polymerization of fluorine containing acrylates.

5. Practical application fields of fluorine containing polymer materials based on fluorinated acrylates and maleates.

Conclusions

References


4. Polymerization and Co-polymerization of Fluorine Containing Acrylates.

The polymerization of fluorine containing acrylates is going under radical initiators acting in water and acetone solutions, as a rule in the majority of cases 2,2'- azo-bis-izobutyroniltrile (AIBN). In the works [115-117] the polymerization of 2,2,3,3,3-pentafluoropropyl--fluoroacrylate and 2,2,3,3-tetrafluoropropyl--acrylate under the influence of 2,2'-azo-bis-(2-methylpropionamidine)dichloride at rather low temperature of 60-70 oC is described. Dodecylmercaptan is used as additive during the polymerization. In the work [119] the co-polymerization of perfluoroctylethylacrylate and methylacrylate in the presence of 2,2'-azobis-(2-methylpropionamidine)dichloride (1-dodecanemercaptan, 160 oC, 1 min, after that at room temperature for 3 hours) [118] or the one involving stearylacrylate in the presence of azo-bis-iso-butyramidine hydrochloride (n-laurylmercaptan, 60oC, 3 h) [119] were studied. The polymerization of perfluoroctylethylmethacrylate passes the same way [120]. In these cases the yield of polymers is rather high and amounts to about 80 %. Perfluoroctylethylmethacrylate and perfluoroctylethylacrylate polyacrylate is obtained out of corresponding monomers by 2,2-azobis-(2-amidinopropane)dihydrochloride (V-50) initiator action in the presence of bromide octadecyltrimethylammonium [121], and it is also obtained during the reaction of CH2=CHOC(O)CH2CH2(CF2)nCF3 (n = 5-11) acrylate and aceto-oxy-methylmethacrylate by azo-bis-isobutylamidine dihydrochloride action in the presence of dodecylmercaptan and C16H33NMe3Cl at 60 oC (10 h) [122].

Liquid-phase process carrying out is also used in the gamma radiation field. For example, in the work [123] the influence of fluorine atoms introduction into acrylates ester fragment in studied for the result of polymerization (the process was hold at 313 K, the 60Co-radiation ). Kinetics of fluorine containing methacrylates polymerization is described quite well by kinetic scheme containing quadratic break of progressing macromolecules and clearly defined gel-effect. Kinectics drastically differs from hydrocarboxylic methacrylates polymerization by absence of quasistationary conditions. Authors suppose, that at the very beginning of fluorine containing acrylates polymerization the strong branching of structures takes place, that leads to special isolation of growing macrocycles. The consequence of this is that there is no quasistationary stage of polymerization. Polymers based on fluorine containing acrylates are characterized by high elasticity and are closing raw rubber by their characteristics, while the polymers of fluorine containing methacrylates are fragile. It can be used to obtain polymer materials with new interesting characteristics.

Co-polymerization of fluorine containing acrylates and unsaturated compounds is one of the approaches to characteristics modified polymer materials synthesis. Mainly, the co-polymerization is hold involving hydrocarboxylic acrylates and methacrylates and some of their derivatives in the presence of tetralkylammonium bromide radical initiators (for example, octadecyltrimethylammonium bromide [121], laurylsulphate sodium salt in the aqueous ammonia medium [124] , C16H33NMe3Cl [122], tatrabutylammonium bromide, cetyltrimethylammonium bromide, dodecyltrichlorammonium chloride, {C22H45N[(CH2CH2O)15H]2[CH2C6H5]}+ . Cl- [119]).

Co-polymerization of hexafluoroisopropyl--trimethylacrylate and isobutyl vinyl ether goes effectively under the action of tert-butylperoxipivalate [125].Co-polymerization of polyfluoroalkylacrylates like CH2=CHC(O)OCH2CH2(CF2CF2)nCF2CHF2 (n = 3,4,5) and butyl- or metylacrylate in the presence of AIBN [126-128] or system CuBr/CuBr2/1,10-phenanthroline/ ethyl-2-bromoisobutyrate [129] goes effectively too. CH2=CHC(O)OCH2CH2(CF2)nCF3 (n = 5-11) acrylate co-polymerizes with methylmethacrylate, 2-hydroxiethylmethacrylate [65,66,130] or styrene [131] in presence of (NH4)2S2O8 and laurylmercaptane [130]. This co-polymerization goes under the action of AIBN in the presence of dodecanthiol [118,132] in acetone or under the influence of AIBN [131], and co-polymerization of CH2=CHOC(O)CH(CH2Cl)(CF2)nF (n = 6,8,10) acrylate and N-methylolacrylamide passes under the influence of K2S2O8 - NaHSO3 [90]. Co-polymerization of CF3CF2(CF2)nCH2CH2OC(O)CH=CH2 ( n = 2,4,6,8,10,12) with methacrylate polyethyleneoxide and dialkylaminoethylmethacrylate passes under the action of acetic acid peroxide at 60 oC [133], the co-polymerization of the first mentioned compound and stearylmethacrylate and 2-hydroxiethylmethacrylate passes at 65 oC [124], it also passes together with acrylates and silicon drivatives [134], and with aminorganylpolysiloxanes [135], with cyanoethylcellulose [136]. 1H,1H,9H-hexadecafluorononyl methacrylate and methacryloxypropyltrimethylsilane produce polymer, which is used to obtain coatings for textiles and glass [137]. The co-polymerization of CH2=CHC(O)O(CH2)11(CF2)7CF3 and 2-hydroxyethylmethacrylate in the presence of dibutylphtalate produces polymer product[138], and co-polymerization of CF3CF2(CF2CF2)nCH2CH2OC(O)CMe=CH2 (n = 6,7,8) and CH2=CHC(O)O(CH2CH2O)mH (m = 3,4,5) produces fluorine containing polymer [139,140], used for textile treatment. Polymerization of CH2=CHOC(O)(CH2CH2)nR (R = 1H,1H-dihydroperfluoroctyl , n = 0-3) is initiated by sodium metabisulphite and ammonium persulphate at 60 oC [141], and polymerization of 1H,1H,5H-octafluoropentylacrylate in dimethylformamide is initiated by hydrogen peroxide at 60 oC (6 h) [142]. Acrylates like CY1Y2=CXOC(O)QRF (RF = C1-C12 polyfluoroalkyl; Q = bivalent organic group; X = H, F, CF3; Y1,Y2 = H, F) are polymerized by (C5Me5)2Sm(III)Me(THF) [143], and 1H,1H,5H-trihydroctafluoropentylacrylate is polymerized in the dimethylformamide medium at 80 oC (6 h) by hydrogen peroxide [142]. Co-polymerization of dimethylhydrosiloxane and A acrylate at 80 oC (6 h) in the presence of hydrosilylation catalyst resultsin forming of polymer product used to obtain glass coatings [144].


We should remember, that in most cases such polymer materials consist of many components, the interacting character of components between each other and polymer matrix is studied not well enough. That's why unexpected effects can appear. For example, the quality of coating can increase because of synergism or on the contrary, it can decrease because of strong catalyzing action of one of mixture's components. Finding ways to increase adhesive characteristics of fluoroorganic polymer coatings is one of the most important practical goals of synthetic chemists. Here we should take into account economic factors. Thus, 1H,1H-dihydroperfluoroalkylethylacrylates compare to 1H,1H, H-trihydroperfluoroacrylates are more expensive and less available, at that in a number of cases properties of their polymer are close to each other, that was used to solve some practical goals. Lately co-polymers of these two groups of compounds are used bringing the mixture share of more expensive component to 30-35 % [145].

The properties modification opportunities of fluorine containing polymer materials with their unique characteristics in case of wide application can lead to noticeable progress in many fields of techniques and medicine.

5. Practical Application Fields of Fluorine Containing Polymer Materials Based on Fluorinated Acrylates and Maleate

One of the main practical application directions of fluorine containing polymer materials based on fluorine modified ether part of acrylates and methacrylates molecules like CH2=CRO(O)(CH2)n(CF2)mA (R = H, Me; n = 1,2; m = 1-10; A = F, CF(CF3)2 ) and CH2=CRO(O)CH2(CF2CF2)nH (R = H, Me; n = 2,4,6,8,10,12) is creating of chemicals, which use for treatment of fiber surface makes them high hydro-and oleophobic, that increases water-and oil-repellent properties and creates protective surfaces based on different compounds. Thus the compositions are used for treatment of cotton [118,121,146,147], silk [127], cellulose [139,148], synthetic fibers (nylon [122,149], viscose [141,150], polyester [151-153]) to add water- and oil-repellent properties to fabrics and to provide them with complex of high consumer characteristics. The fabrics chemical treatment doesn't decrease the resistibility of fiber dyeing, the dirt gotten on to fiber can easily be deleted during washing, such treatment also forwards the improvement of textile articles stability of shape, especially wrinkle resistance. They are used for production of low humidity glass fiber [145].

Fluorine containing co-polymers in combination with other addition agents found their application in cosmetics production (skin moisturizers and tonics) [126,128,152-158] and they are also used for production of biomedical vessels and prosthesis including implantants [159]. High fluorinated organic compounds usually well dissolve molecular oxygen. This particular feature increases quality of cosmetics.

Co-polymers based on 1H,1H-dihydroperfluoroalkylacrylates andoctadecylacrylate were used to create a double coating of polyethylene film, that made it having fog characteristics [160]. Fluorosilicone polymers, obtained using perfluoroalkylacrylates were used to modify surface and characteristics of polyvinylchloride film widely used for agriculture [161]. Free surface energy of fluoro-silicone co-polymer amounted to 8-10 din/cm when molecular mass average value is 3000-7000, and this amount was 15-40 din/cm for double poly-vinylchloride film depending on concentration of used co-polymer.

Co-polymers based on perfluoroctylacrylate and 3-(perfluoroctyl)propan-1,3-diol were used for membranes coating, which distinguished by high water-oil-repellency and firmness [162]. Co-polymer of 1H,1H,2H,2H-heptadecafluorodecylethyl acrylate and dimethylsiloxanediol applied on membrane, made of poly(methacrylate) and poly(dimethylsiloxane) created filtering base for separating water from benzene (benzene concentration was within the range from 0.05 to 70 %) [163]. Here important feature introduced by perfluoroalkyl group is in co-polymer's gas impermeability increase. Co-polymerization of 1H,1H-dihydroperfluorobutyl- and 1H,1H-dihydroperfluoropropylperfluoromethoxyacrylates and unsaturated compounds, for example butadiene, produces products with significantly increased ability to swell in solvents [164], the lengthening of carboxylic chain conversely decreases this feature of polymer products.

Polymer based on fluorine containing acrylate (CnF2n+1)(CH2)xCHROC(O)CH=CH2 ( n = 6, 8, 10; x = 0-3; R = H, CH2OC(O)CH=CH2) produces film on the surface of membrane made of polytetrafluoroethylene, which posseses high water- and oil-repellent characteristics [165].

Poly(perfluoroctylethylacrylate) was applied in the composition to produce artificial marble with long lasting water-repellent characteristics [166], and co-polymer of 1H,1H,2H,2H-heptadecafluorodecyl acrylate and 1H,1H,5H-octafluoropentyl acrylate with dimethylaminoethylmethacrylate was applied in the composition of mixture for glass coating, possessing antipolluting and antifog characteristics [167].

H(CF2CF2)nCH2O fragment in the polymer composition arouses changing of its few characteristics. Thus, modified poly(methylacrylate) especially co-polymer of 1H,1H,3H-trihydrotetrafluoropropyl-2-fluoroacrylate with 1H,1H,5H-trihydroctafluoroamylacrylate possesses characteristics of polymer optical fiber [7].


Refraction index of polymer optical fiber is rather low (n20D =1,4), flow index of melt for applying a light -reflecting covering is 10-30 g /10 min at 190 oC. They are well adhesion to the nucleus of this co-polymer, and also their elasticity is high. This allows to obtain optical fiber of 2 mm diameter, standing strong flexure.

Polymers of -fluoroacrylates exceed a lot in terms of many operational characteristics their methacrylic analogues. Introduction of fluorine into ester part of polymer resulted in improving of block organic glass characteristics and first of all it had an effect on thermal endurance and impact resistance (Table). Excellent optical properties of such fluorine modified polymers coupled with high thermal endurance, flexibility and water-resistance allows to use them in fiber optics. Refraction index of such polymers equal to 1.36 - 1.50 allows to use them as materials of optical fiber nucleus and light-reflecting covering [168-176]. They can be required as materials for optical storage of optical disks [171,177].

Table. Some of Fluorine Containing Acrylates Characteristics.CH2=CYCOORkn , % optical transmissionn20Dan , KJ/m2impact elasticityYRFCH2CF2CF2HCH2(CF2CF2)2HC(CF2)2CF2CF2CF39190901,3981,3791,330957760MeCH2CF2CF2HCH2(CF2CF2)2HC(CF2)2CF2CF2CF39191901,4221,4001,346715062

Polymers based on CH2=CHC(O)OZ acrylates (where Z is fluorine containing alkyl or polyfluorobenzene groups) possess optical and physical characteristics, that allows to use them in optical devices as optical fibers [79]. The synthesis of such polymers was carried out according to the following procedure.


Transparent fluorine containing co-polymers of acrylates were used to obtain materials for plastic optical glass fiber and optical light guides [178].

Fluorine containing acrylates are used to create optical membranes of low refracting index and reflection factor (no higher than 1.4 %) [179]. Co-polymers based on 1H,1H,5H-trihydroperfluoropentylacrylate and 2(perfluoroctyl)-ethylacrylate and alkylacrylates are thermally resistant and stable to solvent influence they produce transparent coatings useful for optical materials [134]. Such polymers were used to create LC optical elements [180] and photo-receivers and air photography devices [181].

Co-polymers of 1H,1H,3H-trihydrotetrafluoropropylmercaptane (6) and 1H,1H,5H-trihydrooctafluoramylacrylate with 1-vinylimidazole, 1-vinyl-1,2,4-triazole and 5-vinyl tetrazole were used to create electrochemical sensor based on NO suitable for use in biological media [182]. Nitrogen oxide operates as an important participant in mammal physiology and its concentration may serve as criteria during diagnostics of different human diseases. Obtained co- polymers due to content of fluoracrylate fragments dissolve in the majority of organic solvents and possess film forming properties. They can be used as effective polymer membranes to create maximum NO-selective electrochemical sensor.

The presence of fluorine atom in a side radical of compound 6 forwards the increasing of gas penetrability, elasticity, mud-repellency in cross-linked hydrogel. One of important properties of such fluorine containing polymers is their ability to prevent surface of optical materials from being cluttered, that is used for production of plastic lenses, contact lenses, optical filters, plastic mirror surfaces, protection of shatterproof multilayer automobile glass. Thus co-polymer 7 based on 1H,1H,3H-trihydrotetrafluoropropylacrylate and 1-vinyl-1,2,4-triazole was used to create material for soft contact lenses [101]. The water absorbing index of this material is 60-90%, the refraction index in dry form is more then 1.5670, in swollen form it is equal to 1.4513 and density is 1.651 - 1.710 g/cm3 (at 20 oC). Such polymer material is durable in terms of mechanics and can be used for working with diamond cutter at lathe, it also can resist a week treatment with 0.1 N solutions of NaOH and HCl without water absorbing and optical parameters change.


The penetrating power of co-polymer 8 of 1-(methacryloxymethyl)perfluorodecaline and methyl-methacrylate and tris-(trimethylsiloxi)silylpropylmethacrylate with MW 300000 for molecular oxygen was 22.6*10-11 ml per cm/cm2, that influences positively the contact of lens and lens surface [183].


Co-polymers 2(perfluoroctyl)ethylmethacrylate 9 with -methacryloxypropyltrimethyl-oxysilane proved to be suitable materials for production of contact lenses [184].


We'd like to draw your attention to opportunities of fluorinated diols as semi-products for synthesis of polymer materials for different technical purposes [61-63]. The presence of perfluoroalkyl and hydrophilic groups in polymer increases adsorption of oxygen and biocompatibility with body tissues, that is used, for example, for production of contact lenses [185-191] and for production of venous vessels and prosthesis [71,192].

Polymers based on fluorine containing ethers of maleic acid are used for compositions of thermal resistant coatings, for impregnation of cotton, wool, nylon, dacron, and fabrics made of glass fiber as water-, mud- and grease-repellent films [107].

Acrylates fluorine modified by ester group are used to obtain filtering materials by treating of porous materials with fluorine containing polymers [10]. Such filters are high water- and oil-repellent. They are useful for producing of different semi-products for medical, researching, consumer and industrial applications. Mainly, perfluoroalkylesters of methacrylic acid were used.

Esters of fluorine alcohols and saturated acids can be used as lubricating materials, plasticizers, hydraulic liquids, and also to obtain polymers and co-polymers which are insoluble in common solvents, used to obtain coatings [193, 194].

A transfer to science intensive production can't be carried out without renewal of equipment, enforcement of industrial safety standards, protection of equipment, functioning under conditions of corrosion active media influence. Providing of corrosion proofness of main industrial funds must become a main scientific and technical goal and an important subject for the field of ecological and man-caused safety management. Fluorine materials of wide application field should play the decisive part to solve this problem, because they possess a number of unique properties.

Conclusion

As we see from the experimental data listed above the fluorine containing chemicals based on fluorine derivatives of acrylic, methacrylic and maleic acids found their wide application for providing materials with water- and oil-repellent properties, which effectiveness is essentially higher than the ones of siloxane compounds. The application of coatings made of these materials, which showed high consumer characteristics has been started. As the achieving of fluorine chemicals high activity is becoming more and more important factor for development of fine organic synthesis, it is obvious that new approaches listed in this review will find a wide application to carry out aimed synthesis of potential compounds of wide practical application field. This class of compounds is of deep interest of not only scientific, but also of application aspects. Realizing the significance of fluorine materials is a guarantee for success of this chemistry field.


References


    [1] Feiring A.E. // in Organofluorine Chem. Eds. Banks R.E., Smart B.E., Tatlow J.C. Plenum : New York. N. Y. 339-372 (1994)

[2] Milker R., Moeller B. // Tech. Mitt. 87, 96-99 (1994); Chem. Abstr. 1995. 123, 170971.

[3] Ishikawa N., Kobayashi Y. // Fluorine compounds. – Chemistry and Application. Trans. In Japanese M.V. Pospelov. Ed. A.V. Forin. Ě. : Ěir. 1982. 276 P.

[4] Boguslavskaya L.S., Panteleeva I.Yu., Morozova T.V., Kartartasjov A.V., Chuvatkin N.N. // Uspekhi Khim. 59, 1555-1575 (1990).

[5] Sletkina L.S., Redina L.V., Kolokolkina N.V.// Khim. Volokna. 27-29 (1995); Chem. Abstr. 1999. 128, 62728.

[6] Shimizu T., Yano S. (Daikin Industries, Japan) // Kobunshi Kako. 46, 13-19 (1997); Chem. Abstr. 1998. 126, 212582.

[7] Chuvatkin N.N., Panteleeva I.Yu. // In Modern fluoropolymer. Ed. J. Scheirs. Wiley : New York. 1997. P. 191.

[8] Clark J.C., Newland J.C., Ramrath R.F., Burleigh M.B., Schaffer K.R. // Pat. U.S. 6613862 (2003). C08G018/79.

[9] Soane D.S., Offord D.A. // Pat. U.S. 6617267 (2003). B32 B 027/12.

[10] Yao L. (Polex Technologies Corp., USA) Pat. U.S. 6638610 (2003); B 32 B 003/26; B 32 B 027/14.

[11] Lui N., Podszum W. // Eur. Pat. Appl. EP 744394 (1996); Chem. Abstr. 1997. 126, 19428n.

[12] Moore G.G.I., Mc Cormick F.B., Chattoraj M., Cross E.M., Liu J.J., Roberts R.R., Schulz J.F. // Pat. U.S. 6005137 (1999).

[13] Fielding H.C. // in Organofluorine Chemical and their industrial Application. (Ed. R.E. Banks) Ellis Horwood : Chichester. 1979. P. 214.

[14] Bernar B., Devaty J., Kralicek J., Zachoval J. // Org. Coat. Appl. Polym. Sci. Proc., 48, 711 (1983).

[15] Yong T.-M., Hems W.P., van Nunen J.L.M., Holmes A.B., Steinke J.H.G., Taylor P.L., Segal J.A., Griffin D.A. // J. Chem. Soc., Chem. Commun., 1811 (1997).

[16] Bednar B., Marousek V., Zachoval J., Paleta O. // Pat. Czech. CS 273782 (1992); Chem. Abstr. 1993. 120, 120754s.

[17] Paleta O., Danda A., Stepan L., Kvicala J., Dedek V. // J. Fluorine Chem., 45, 331 (1989).

[18] Pat. U.S. 2642416 (1952) (Minnesota Mining & Mfg. Co.).

[19] Blochel W. // Pat. U.S. 3285393 (1970).

[20] Millauer H. // Pat. Ger. 2318677 (1975).

[21] Yamaguchi F., Takaki S., Yoshizawa T., Ogura E., Katsube // Pat. U.S. 6187969 (2001).

[22] Uklonskii I.P., Denisenkov V.F., Il`in A.N., Ivanova I.M., Bakhmutov Yu.L., Mineev S.N. // Pat. RU 2150459 (2000); Chem. Abstr. 2002. 136, 218614b.

[23] Wada A., Tanaka H., Tanabe K., Yamagishi N., Toma T. // Claim 1191009, EP (2002).

[24] Blickle P., Heumueller R., Hintzer K., Schwertfeger W., von Werner K. / Ger. Offen DE 3915759 (1990); Chem. Abstr. 1991. 114, 184789r.

[25] Skibida I.P., Sakharov A.M., Bakhmutov J.L., Denisenkov V.F., Martynova N.P. / Pat. U.S. 5495034 (1996); Russ. Chem. Abstr.1997. 20Í 105Ď.

[26] Ichihara K., Aoyama H. / Appl. 1085006EP(2001);

[27] Nguyen T., Wakselman C. // Synth. Commun. 20. 97-99 (1990).

[28] Maksimov B.N., Kosareva L.N., Ryabinin N.A. // Pat. RU 2107751 (1993);

[29] Szlavik Z., Tarkanyi G., Skribanek Z., Vass E., Rabai J. // Org. Lett., 3. 2365-2366 (2001); Chem. Abstr. 2001. 135, 210736b.

[30] II`in A.A., Ivanova L.M., II`in A.N., Furin G.G., Pokrovsky L.M. // Zh. Prikl. Khim., in press.

[31] Wada A., Tanaka H., Tanabe K., Yamagishi N., Toma T. // Claim 1191009 EP (2002);

[32] Yashizawa T., Takai S., Yasuhara T., Yokoyama Y. (Daikin Industries, Ltd., Japan) // Appl. 1179521 EP (2002);

[33] Oharu K. (Asahi Glass Co., Ltd., Japan) // PCT Int. Appl. WO 02 28807 (2002); Chem. Abstr. 2002. 136, 294534r.

[34] Ishihara K., Homoto Y., Baba N. (Daikin Industries, Ltd., Japan) // Jpn Kokai Tokkyo Koho JP 53505 (2002); Chem. Abstr. 2002. 136, 167088y.

[35] Haszeldine R.N., Rowland R., Sheppard R.P., Tipping A.E. // J. Fluorine Chem., 28, 291 (1985).

[36] Paleta O., Dedek V., Routschek H., Timpe H.-J. // J. Fluorine Chem., 42, 345 (1989).

[37] Paleta O., Dedek V., Neuenfeld S., Timpe H.-J. // Pat. Czech.268 247 (1989); Paleta O., Kvicala J., Budkova Z., Timpe H.J. // Collect. Czech. Chem. Commun., 60, 636-644 (1995); Chem. Abstr. 1995. 123. 111327q; Yoshizawa T., Takaki S., Yasuhara T., Yokoyama Y. (Daikin Industries, Ltd., Japan) // Pat. Eur. Pat. Appl. EP. 967193 (1999); Chem. Abstr. 2000. 132. 51457f.

[38] Takaki S., Yoshizawa T. (Daikin Industries, Ltd., Japan) // Pat.. Eur. Pat. Appl. EP. 968990 (2000); Chem. Abstr. 2000. 132, 65740e.

[39] Yoshizawa T., Takaki S. (Daikin Industries, Ltd., Japan) // Pat. PCT Int. Appl. WO. 02 18308 (2002); Chem. Abstr. 2002. 136, 233886k.

[40] Yamaguchi F., Katsube T. // Pat. U.S. 6313357 (2001);

[41] Takaki S., Yoshizawa T. // Pat. U.S. 6294704 (2001);

[42] Yoshizawa T., Takaki S. (Daikin Industries, Ltd., Japan) // Pat. PCT Int. Appl. WO. 02 18309 (2002); Chem. Abstr. 2002. 136, 218630d.

[43] Guiot J., Alric J., Ameduri B., Rousseau A., Boutevin B. // New J. Chem., 25. 1185-1190 (2001); Chem. Abstr. 2002. 136, 37984b.

[44] Chambers R.D., Grievson B. // J. Chem. Soc., Perkin Trans, 1, 2215 (1985).

[45] Chambers R.D., Grievson B. // J. Fluorine Chem., 29, 323 (1985).

[46] Motherwell W.B., Crich D. // Free Radical Chain Reactions in Organic Synthesis. Academic Press Ltd. : London. 1992.

[47] Okamoto H. (Asahi Glass Co., Ltd., Japan) // Pat. PCT Int. Appl. WO. 02 16295 (2002); Chem. Abstr. 2002. 136, 199936q.

[48] Uklonskii I.P., Denisenkov V.F., Il`in A.N., Mineev S.N., Bakhmutov Yu.L., Ivanova L.V. // Russ. RU 2209204 (2003); Chem. Abstr. 2004. 140, 305758c.

[49] Furin G.G., Il`in A.A., Ivanova L.M., Bakhmutov Yu.L., Il`in A.N., Suchinin V.S., Tolstikova T.G. // Zh. Prikl. Khim., 77, 102-105 (2004).

[50] Wada A., Fujima T., Kawahara K. (Asahi Glass Co., Ltd., Japan) // Pat. Jpn. Kokai Tokkyo Koho JP. 2002173454 (2002); Chem. Abstr. 2002. 137, 20153.

[51] Cirkva V., Polak R., Paleta O. // J. Fluorine Chem. 80, 135-144 (1996).

[52]. Kurykin M.A., German L.S., Kartasheva L.I., Pikaev A.K. // J. Fluorine Chem. 77, 193-194 (1996).

[53] Chambers R.D., Kelly N., Emsley J.M., Jones W.G.M. // J. Fluorine Chem., 13, 49 (1979).

[54] Muramatsu H., Moriguchi S., Inukai K. // J. Org. Chem., 31, 1306 (1966).

[55] Chambers R.D., Diter P., Dunn S.N., Farren C., Sandford G., Batsanov A.S., Howard J.A.K. // J. Chem. Soc., Perkin Trans, 1, 1639-1649 (2000).

[56] Kawa H. // Pat. U.S. 6479712 (2002);

[57] Udagawa A. // Jpn. Kokai Tokkyo Koho JP 240571 (2001); Chem. Abstr. 2001. 135, 212588d.

[58] Paleta O., Palecek J., Michalek J. // J. Fluorine Chem., 114, 51-53 (2002).

[59] Seki T., Shimada M., Oharu K., Maekawa T. (Asahi Glass Co., Ltd, Japan) Jpn. Kokai Tokkyo Koho JP 2003335773 (2003); Chem. Abstr. 2003. 139,396928; Homoto Y., Tanaka K. (Daikin Industries, Ltd, Japan) Pat. Int Appl. WO 2002062735 (2002); Chem. Abstr. 2003. 137, 140932.

[60] Podsevalov P.A., Furin G.G. // on-lain Journal Fluorine Notes. In press; Haniff M., Falk R.A., Deisenroth T., Mueller K.F. (Ciba-Geigy A.-G.) // Eur. Pat. Appl. EP 690039 (1996); Chem. Abstr. 1996. 124, 234995.

[61] Boutevin B., Robin J.J. // Adv. Polym. Sci., 102, 105 (1992).

[62] Guyot B., Ameduri B., Boutevin. // J. Fluorine Chem. 74, 233-240 (1995).

[63] Wood C.D., Michel U., Rolland J.P., DeSimone J.M. // J. Fluorine Chem., 125, 1671-1676 (2004).

[64] Udagawa A. // Pat. Jpn. Kokai Tokkyo Koho JP. 240571 (2001); Chem. Abstr. 2001. 135, 212588d.

[65] Paleta O., Palecek J., Michalek J.// J. Fluorine Chem. 114, 51-53 (2002).

[66] Boutevin B., Pietrasanta Y. // Les Acrylates et Polyacrylates Fluores : Derives et Applications. EREC, Paris. 1988.

[67]. Russo A., Tonelli C. // J. Fluorine Chem., 125, 181-188 (2004).

[68] Sianesi D., Caporiccio G., Mensi D. // Pat. U.S.3847978 (1974).

[69] Sianesi D., Marchionni G., De Pasquale R.J. // Organofluorine Chemistry : Prinsiples and Commercial Applications. Eds. R.E. Banks et al. Plenum Press : New York. 1994.

[70] Saloytina L.V., Zapevalov A. Ya., Kodess M.I., Kolenko I.P. // Zh. Org. Khim., 18, 788-793 (1982).

[71] Paleta O., Cirkva V., Kvicala J. // Macromol. Symp., 82, 111 (1994); Kvicala J., Dolensky B., Paleta O. // J. Fluorine Chem., 85, 117-125 (1997); Vilenchik Y.M., Lekontseva G.I., Neifel`d P.G., Pospelova N.B. // Zhur. Vses. Khim. Obshch. D.I. Mendeleeva USSR , 26, 212,213 (1981); Paleta O., Dabda A., Stepan L., Kvicala J., Dedek V. // J. Fluorine Chem., 45, 331 (1989); Howell J.L., Lu N., Friesen C.M. // J. Fluorine Chem., 126, 281-288 (2005); Ohmori A., Tomihaski N., Tamaru S. // Eur. Pat. Appl. EP 07959 (1982).

[72] Cirkva V., Bohm S., Paleta O. // J. Fluorine Chem., 102, 159-168 (2000).

[73] Cirkva V., Paleta O. // J. Fluorine Chem., 94, 141-156 (1999).

[74] Ayari A., Szonyi S., Rouvier E., Cambon A. // Bull. Soc. Chim. Fr., 129, 315 (1992).

[75] Paleta O., Budkova Z., Kvicala J., Timple H.-J. // Coll. Czech. Chem. Commun., 60, 636 (1995).

[76] Paleta O., Cirkva V., Kvicala J. // J. Fluorine Chem., 80, 125 (1996).

[77] Cirkva V., Polak R., Paleta O. // J. Fluorine Chem., 80, 135 (1996).

[78] Paleta O., Budova Z., Kvicala J., Timple H.-J. // Tetrahedron Lett., 32, 251 (1991).

[79] Moore G.G.I., McCormick F.B., Chattoraj M., Cross E.M., Liu J., Jacob R.R.R., Schulz J.F. // Pat. U.S. 6005137 (1999);

[80] Goldinov G.S., Averbach K.O., Nekrasova L.A. // Zh. Prikl. Khim. 49, 1341-1345 (1976).

[81] Goldinov G.S., Averbach K.O., Nekrasova L.A., Lavigin I.A., Leitan O.V., Chalbisheva N.V. // Zh. Prikl. Khim. 58, 1349-1353 (1985).

[82] Pat. Japan 59-181239 (1984)

[83] Goldinov G.S., Averbach K.O., Nekrasova L.A. // Zh. Prikl. Khim. 57, 1577-1581 (1984).

[84] Hayashi T., Yamaguchi H. (Asahi Glass Co., Ltd.) // Pat. Japan 73 30611 (1973); Chem. Abstr. 1974. 80, 26771.

[85] Homoto Y., Tanaka K. (Daikin Industries, Ltd., Japan)// PCT Int. Appl. WO 2002062735 (2002); Chem. Abstr. 2003. 137. 140932.

[86] Kashkin A.V., Bakhmutov Yu.L., Marchenko N.N. // Pat. USSR 316686 (1969).

[87] Hoshino Y., Shimada M., Maekawa T. (Asahi Glass Co., Ltd, Japan) // Jpn. Kokai Tokkyo Koho JP 204250379 (2004); Chem. Abstr. 2004. 141, 226367.

[88] Bradley D., Ma J.-J., Nalewajek D., Samuels G.J., Stachura L.M., Van der Puy M. (Honeywell Interrnational Inc., USA) // PCT Int. Appl. WO 2002103103 (2002): Chem. Abstr. 2004. 138, 57436.

[89] Cassidy P.E., Aminabhavi T.M., Reddy V.S., Fitch J.W. // Eur. Polym. J. 31, 353-361 (1995); Chem. Abstr. 1995. 122, 241099.

[90] Huber-Emden H., Schaefer P. (Ciba-Geigy A.-G.) // Ger. Offen 2350571 (1974); Chem. Abstr. 1975. 83, 59741.

[91] Taniguchi N. (Nippon Kayaku Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2002003550 (2002); Chem. Abstr. 2003. 136, 70726.

[92] Masutani T., Kokawa H., Itami Y., Mori H. (Daikin Industries, Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2004225019 (2004); Chem. Abstr. 2004. 141, 191403.

[93] Taniguchi N. (Nippon Kayaku Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2002128816 (2002); Chem. Abstr. 2003. 136, 356095.

[94] Krespan C.G. // in Chemistry of Organic Fluorine Compounds. II. A Critical Review. Eds. M. Hudlicky, A.E. Pavlath. 1995. Vol. 185, ACS Monograph 187. American Chemical Society. Washington, DC, P.297 and 311-312.

[95] Taniguchi N., Yokoshima M. (Nippon Kayaku Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2000044650 (2000); Chem. Abstr. 2000. 132, 153356.

[96] Taniguchi N. (Nippon Kayaku Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2002308829 (2002); Chem. Abstr. 2003. 137, 312002.

[97] Bradley D., Ma J.-J., Nalewajek D., Samuels G.J., Stachura L.M., Van der Puy M., Nair H. (Honeywell International Inc., USA) // PCT Int. Appl. WO 2002102758 (2002); Chem. Abstr. 2004. 138, 56391.

[98] Akira O., Shoji T., Takahiro K. // Pat EPO. 1366668 (1985).

[99] Akira O., Shoji T., Takahiro K. // Pat. U.S.4604482 (1987);

[100] Akira O., Takahiro K. , Shoji T. // Claim Japan. 61-85345 (1987);

[101] Ermakova T.G., Kuznezhova N.P. // Seminare “Fluoropolymers materials : fundametral, prikladnoy in proizvotstvenye aspects”, Istomino, ozero Baikal. 9-11 Aug. 2003. Abstr.SO-11. P. 103.

[102] Boutevin B., Rousseau A., Bosc D. // J. Polym. Sci., Polym. Chem., 30, 1279 (1992).

[103] Knoche Th., Mueller L., Klein R., Neyer A. // Electron Lett., 32, 1284 (1996).

[104] Heumueller R., Herbrechtsmeier P., Siegemund G., Groh W. // Ger. Offen DE 3620050 (1988) (Hoechst A.-G.); Chem. Abstr. 1988. 108. 205235.

[105] Blazejewski J.-C., Hofstraat J.W., Lequesne C., Wakselman C., Wiersum U.E. // J. Fluorine Chem.,97, 191-199 (1999).

[106] Blazejewski J.-C., Hofstraat J.W., Lequesne C., Wakselman C., Wiersum U.E. // J. Fluorine Chem., 91, 175-177 (1998).

[107] Holland D.G., Deitchman B.D. // Pat. US 3868408 (1975) C07C69/52; 1975, 24Í48Ď.

[108] Goldinov G.S., Averbach K.O., Nekrasova L.A., Kisin A.V. // Zh. Obshch. Khim. 47, 1086-1088 (1977).

[109] Zimmerman R.L. // Pat. US 3128303 (1964) (The Dow Chemical Co.).

[110] Schinzel E., Kleber R. // Pat. Ger. 3204378 (1983) (Hoechst A.-G.);

[111] Il`in A.N., Bakhmutov Yu.L., Il`in A.A., Ivanova L.M.// Seminare “Fluoropolymers materials : fundametral, prikladnoy in proizvotstvenye aspects”, Istomino, ozero Baikal. 9-11 Aug. 2003. Abstr. CO-14. P. 109-110.

[112] Pechhold E. // PCT Int. Appl. WO 9711218 (1997) (E.I. Du Pont De Nemours and Company, USA); Chem. Abstr. 1998. 126. 306362.

[113] Goldinov G.S., Averbach K.O., Nekrasova L.A. // Zh. Prikl. Khim. 50, 908-913 (1977).

[114] Goldinov G.S., Averbach K.O., Nekrasova L.A. // Zh. Kolloid. Khim. 39, 134-136 (1977);

[115] Samarina A.V., Kutergina I.A., Burtseva V.V., Monich I.M., Perevaryukha M.A., Ovchinnikov E.Yu. // Russ. RU 2064938 (1996); Chem. Abstr. 1997. 126. 294169.

[116] Ohmori A., Tomihashi N., Kitahara T. (Daikin Kogyo Co., Ltd.) // Eur. Pat. Appl. EP 128516 (1984); Chem. Abstr. 1985. 102. 185964.

[117] Tanaka K., Higuchi T., Hashimoto Y. (Dainippon Ink and Chemicals, Inc, Japan) // Jpn. Kokai Tokkyo Koho JP 10309455 (1998); Chem. Abstr. 1999. 130, 53715.

[118] Alanzo V., Locatelli M., Giordano S., Li B.G. (Lamberti S.p.A., Italy) // Eur. Pat. Appl. EP1162218 (2001); Chem. Abstr. 2003. 136, 38907.

[119] Amimoto Y., Shinjo M., Enomoto T., Hayashi K. (Daikin Ind., Ltd., Japan) Pat. U.S. 5055538 (1991); Rus. Chem. Abstr. 1993. 2T 441P.

[120] Samukawa H. (Sony Chemicals Corp., Japan) // Eur. Pat. Appl. EP 882746 (1998); Chem. Abstr. 1999. 130, 52830.

[121] Linemann R., Malner T., Brandsch R., Bar G., Mulhaupt R. // Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.). 39, 966-967 (1998); Chem. Abstr. 1999. 129, 261198.

[122] Suzuki Y., Hidaka H. (Dainippon Ink & Chemicals, Japan) // Jpn. Kokai Tokkyo Koho JP 07 228638 (1995); Chem. Abstr. 1996. 124, 31953.

[123] Kim I.P., Barkalov I.M., Baibikov F.A., Allayarov S.R., Rostomchanov M.G. // Izv. Akademy Nauk SSSR. Ser. Khim. 1330-1334 (1991).

[124] Fitzgerald J.J. (E.I. du Pont de Nemours and Company, USA) // PCT Int. Appl. WO 9943725 (1999); Chem. Abstr. 1999. 131, 186186.

[125] Komoriua H., Koga N., Tsutsumi K., Maeda K. (Central Glass Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2002201231 (2002); Chem. Abstr., 2003. 137, 94198.

[126] Morita M., Nagashima A., Watanabe T. (Daikin Industries, Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2001131022 (2001); Chem. Abstr., 2001. 134, 357377.

[127] Dong D., Liu B., He R. (Wujiang Silk Co., Ltd., Peop. Rep. China) // Faming Zhuauli Shenqing Gongkai Shuomingshu CN 1270250 (2000); Chem. Abstr., 2001. 134, 327844.

[128] Morita M., Watanabe T., Nagashima A. (Daikin Industries, Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2001131023 (2001); Chem. Abstr., 2001. 134, 357380.

[129] Zhang B., Zhang Z., Wan X., Hu C., Ying S. // Gaofenzi Xuebao, 906-909 (2003); Chem. Abstr., 2004. 140, 271301; Boutevin B., Rigal G., Rousseau A. // J. Fluorine Chem., 1988. 38, 47-73.

[130] Tanaka H., Suzuki Y., Yoshino F (Dainippon Ink and Chemicals, Inc, Japan) // Jpn. Kokai Tokkyo Koho JP 11269238 (1999); Chem. Abstr. 1999. 131, 258990.

[131] Kim S.-S., Lee S.-W., Haw J.-L., Huh W.S. // Polymer (Korea) 26, 9-17 (2002); Chem. Abstr., 2003. 136, 325910.

[132] Maruyama T., Aiki Y., Komatsu M. (Lion Corp. Japan) // Jpn. Kokai Tokkyo Koho JP 2002105433 (2002); Chem. Abstr., 2003. 136, 310586.

[133] Lore A.L., Raynolds S. (du Pont de Nemours, E.I. and Co.) // Pat. U.S. 4127711 (1978); Chem. Abstr. 1979. 90, 88714.

[134] Taniguchi N. (Nippon Kayaku Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2004035852 (2004); Chem. Abstr. 2004. 140, 147747.

[135] Abele B.C., Mahr G., Winterfeld J., Wimmer F., Spannbrucjer A. (Wacker-Chemie G.m.b.H., Germany) // Ger. Offen DE 19923477 (2000); Chem. Abstr. 2001. 134, 6004.

[136] Matsui H., Shiraishi N. // Mokuzai Gakkaishi., 46, 468-474 (2000); Chem. Abstr. 2001. 134, 239072.

[137] Fukuchi Y. (Toyo Ink Mfg Co., Japan) // Jpn. Kokai Tokkyo Koho JP 07 331115 (1995); Chem. Abstr. 1996. 124, 235035.

[138] Shimizu T., Dejima H., Aoyanagi M. (Kao Corp., Japan) // Jpn. Kokai Tokkyo Koho JP 08 81883 (1996); Chem. Abstr. 1996. 125, 60913.

[139] Kubo M., Enomoto T. (Daikin Industries, Ltd., Japan) // PCT Int. Appl. WO 96 12775 (1996); Chem. Abstr. 1996. 125, 60908.

[140] Kubo M., Enomoto T. (Daikin Industries, Ltd., Japan) // PCT Int. Appl. WO 96 18764 (1996); Chem. Abstr. 1996. 125, 170813.

[141] Hwang F.S., Hogen-Esch T.E. // Macromolecules. 28, 3328-3335 (1995); Chem. Abstr. 1995. 122, 215092.

[142] Noji A. (Nok Corp., Japan) // Jpn. Kokai Tokkyo Koho JP 07 268026 (1995); Chem. Abstr. 1996. 124, 148513.

[143] Yasuda G., Kashiwagi K. (Asahi Glass Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 11255829 (1999); Chem. Abstr. 1999. 131, 229178.

[144] Kakimoto M., Kojima H., Okuda Y., Fukuda Y., Tanaka G. (Sumitomo Electric Industries, Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 08 48782 (1996); Chem. Abstr. 1996. 124, 345007.

[145] Sletkina L.S., Kolokolkina N.V., Redina L.V., Plotnikova E.V. // Fibre Chem., 29, 123-125 (1997); Chem. Abstr. 1999. 128, 14093.

[146] Kubo M., Morita M., Uesugi N. // (Daikin Industries, Ltd., Japan) PCT Int. Appl. WO 95 18194 (1995); Chem. Abstr. 1995. 123, 172574.

[147] Raiford K.G., Greenwood E.J., Dettre R.H. (du Pont de Nemours, E.I. and Co., USA) // Pat. U.S. 5344903 (1994); Chem. Abstr. 1995. 122, 33510.

[148] Sumitomo M., Setoyama K., Misu T., Matsuhira S. (Showa Denko K.K., Japan) // Jpn. Kokai Tokkyo Koho JP 10249806 (1998); Chem. Abstr. 1999. 129, 303863.

[149] Ito K., Kamata T. (Asahi Glass Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 06 271839 (1994); Chem. Abstr. 1995. 122, 216493.

[150] Sletkina L.S., Redina L.V., Kolokolkina N.V., Savosina G.N., Vedeneeva I.V.// Fibre Chemistry. 36, 37-40 (2004); Chem. Abstr. 2004. 1241, 315738; Lonati M., AlAchari A., Ghenaim A., Caze C. // Text. Res. J. 69, 381-387 (1999); Chem. Abstr. 1999. 131, 89005.

[151] Dejima H., Hishige T., Aoyanagi M. (Kao Corp.) // Jpn. Kokai Tokkyo Koho JP 07 11241 (1995); Chem. Abstr. 1995. 122, 316869.

[152] Lyanagi K. (Pola Chemical Industries, Inc., Japan) // Jpn. Kokai Tokkyo Koho JP 2004123726 (2004); Chem. Abstr. 2004. 140, 344512.

[153] Lyanagi K. (Pola Chemical Industries, Inc., Japan) // Jpn. Kokai Tokkyo Koho JP 2004115502 (2004); Chem. Abstr., 2004. 140, 326639.

[154] Nakahara Y., Naniwa K. (Asahi Denka Kogyo K.K., Japan) // Jpn. Kokai Tokkyo Koho JP 11228501 (1999); Chem. Abstr., 1999. 131, 171888.

[155] Lyanagi K., Iida M. (Pola Chemical Industries, Inc., Japan) // Jpn. Kokai Tokkyo Koho JP 2004115501 (2004); Chem. Abstr., 2004. 140, 326638.

[156] Kaida Y., Yamamoto H. (Asahi Glass Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 2004035865 (2004); Chem. Abstr., 2004. 140, 146654.

[157] Lyanagi K. (Pola Chemical Industries, Inc., Japan) // Jpn. Kokai Tokkyo Koho JP 2004123727 (2004); Chem. Abstr., 2004. 140, 344513.

[158] Lyanagi (Pola Chemical Industries, Inc., Japan) // Jpn. Kokai Tokkyo Koho JP 2004123725 (2004); Chem. Abstr., 2004. 140, 344522.

[159] Domschke A.M., Franis V.M. (Novartis A.-G.) // PCT Int. Appl. WO 2000078830 (2000); Chem. Abstr. 2001. 134, 57126.

[160] Nakahara Y., Naniwa K. (Asahi Denka Kogyo K.K., Japan) // Jpn. Kokai Tokkyo Koho JP 11228501 (1999); Chem. Abstr. 1999. 131, 171888.

[161] Kim D.-K., Park I.-J., Choi Y.-K., Lee S.-B. // 2nd International Conference “Chemistry, Technology and Application of Fluorocompounds”, Sept. 23-26, 1997. St. Petersburg, Russia. Abstracts. P 2-21. P. 92.

[162] Harada E., Higuchi H., Omura H., Suyama S. (Nippon Oil and Fata Co., Ltd., Japan) // Jpn. Kokai Tokkyo Koho JP 1027983 (1998); Chem. Abstr. 1999. 129, 344511.

[163] Miyata T., Yamada H., Uragami T. // Macromolecules. 34, 8026-8033 (2001); Chem. Abstr. 2003. 136, 54725.

[164] Fluoropolymers. Ed. L.A. Wall. Wiley-Interscience A Division of John Wily & Son., Inc. N.Y., 1972. Russian Transl. M. : Mir. 1975. 448 P.

[165] Keningsberg Y., Shchori E. (Gelman Sciences Technology, Inc.) PCT Int. Appl. WO 91 01791 (1991); Pat. U.S. 5156780 (1992); Chem.Abstr. 1991. 115, 94542.

[166] Nakamura T., Tasaka T., Sugiura M. (NOF Corporation, Japan) // Jpn. Kokai Tokkyo Koho JP 2002097338 (2002); Chem. Abstr. 2003. 136, 280231.

[167] Yamaguchi F., Takaki S., Yoshizawa T., Ogura E., Ratsube T. (Daikin Industries, Ltd., Japan) // Pat. Eur. Pat. Appl. EP. 968989 (2000); Chem. Abstr. 2000. 132. 65739m.

[168] Akira O., Nobuyuki T., Takahiro K. // Pat EPO 128516 (1985); Chem. Abstr. 1985. 102, 185964h.

[169] Akira O., Nobuyuki T., Takahiro K. // Pat EPO 128517 (1985); Chem. Abstr. 1985. 102, 115070g.

[170]Akira O., Takahiro T., Takahiro K. // Claim Japan. 60-118808 (1987);

[171] Bosc D., Boutevin B., Pietrasanta Y., Rousseau A. // Claim France 2623510 (1990);

[172] Jjaa S., Koji N., Masoru M., Takashi J. // Claim Japan 61-121005 (1986); Chem. Abstr. 1986. 105, 192481.

[173]Takashi J., Katsuhiko S., Ryuji M. et al. // Claim Japan 61-240205 (1987); Chem. Abstr. 1987. 106, 139496.

[174] Tategami Y., Fujita K., Furuta M., Tamura T. // Claim Japan 60-250309 (1986); Chem. Abstr. 1986. 104, 226030n.

[175] Joshiharu T., Katsuramaru T., Motonobu F., Tashibubnu T. // Claim Japan 61-208006 (1987); Chem. Abstr. 1987. 106, 68407.

[176]Shigeru M., Masahiko O.// Claim Japan 61-86448 (1986); Chem. Abstr. 1986. 105, 157727.

[177] Akira O., Kazuo I.// Pat. EPO 158113 (1985); Chem. Abstr. 1985. 104, 89225.

[178] Pat. U.S. 6392105 (2002);.

[179] Oka K. (Toray Industries, Inc., Japan) // Jpn. Kokai Tokkyo Koho JP 11001633 (1999); Chem. Abstr. 1999. 130, 111637.

[180] Goto T., Murai H., Nakada D. (Nippon Electric Co., Japan) // Jpn. Kokai Tokkyo Koho JP 06202086 (1994); Chem. Abstr. 1995. 122, 93011.

[181] Sekya M., Nakamura K. (Canon Kk, Japan) // Jpn. Kokai Tokkyo Koho JP 06308756 (1994); Chem. Abstr. 1995. 122, 226773.

[182] Petrova T.L., Kizhnyaev V.N., Kashevsky A.V., Smirnov A.I. // Seminare “Fluoropolymers materials : fundametral, prikladnoy in proizvotstvenye aspects”, Istomino, ozero Baikal. 9-11 Aug. 2003. Abstr. YD-14. P. 63.

[183] Yamamoto F., Yakushiji Y. (Kuraray Co., Japan) // Jpn. Kokai Tokkyo Koho JP 07 41518 (1995); Chem. Abstr. 1995. 123, 146123.

[184] Matsunaga T., Kono S. (Toray Industries, Japan) // Jpn. Kokai Tokkyo Koho JP 07 16940 (1995); Chem. Abstr. 1995. 123, 171987.

[185] Tighe B.J. // in Fluoropolymers conferences. Ed. R.E. Banks. UMIST : Manchester. Chap. 11. 1992.

[186] Refojo M.F. // in Contact Lens Practice. Eds. M. Ruben, M. Guillon. Chapman & Hall : London. Chap. 2. 1994.

[187] Hogi T., Osawa N. // Jpn. Kokai Tokkyo Koho JP. 0497117 (1987); Chem. Abstr. 1992. 117, 118550.

[188] Iwata J., Ikeda M. (Asahi Chemical Ind., Japan) // Jpn. Kokai Tokkyo Koho JP. 9432904 (1994); Chem. Abstr. 1994. 121, 84211.

[189] Yokoyama Y., Noriko I., Ito E., Ichinone S., Yamazaki T. // Eur. Pat. Appl. EP 600269 (1994); Chem. Abstr. 1995. 122, 142635.

[190] Fujitani H., Komura I., Nagase H., Aoyagi T., Akimoto M. // Jpn. Kokai Tokkyo Koho JP. 09291530 (1997); Chem. Abstr. 1997. 127, 298797.

[191] Akaishi M. // Jpn. Kokai Tokkyo Koho JP. 10333103 (1997); Chem. Abstr. 1999. 130, 100710.

[192] Hydrogels for medical and related applications. // Ed. J.D. Andrade. ACS Symposium. Series 31. Washington. 1976.

[193] Pat. USA 3 419 602 (1968).

[194] Pat. USSR 765 330 (1980).

Fluorine Notes, 2005, 43, 1-2

© 1998-2025 Fluorine Notes. All Rights Reserved.