A similar picture has place for nucleotides based on uracil and
cytosine. In this case the formation of the adduct (syn-isomer)
points to a mechanism including intermediate generation of
-fluorocarbcation
[166].
Such natural compounds as 3-methoxy-4-hydroxy-L-phenylalanine
16 in the reaction of fluorination with
acetylhypofluorite gives at 20oC a mixture of
2-, 5- and 6-fluoro derivatives 17 [156]. At the same time
biologically active peptides containing the tyrosine ring
give exclusively 2-fluoroderivative [156,169]. A mixture
of 2-,4- and 6-fluoroderivatives is formed in a ratio of
36:11:52 in case of fluorination with m-tyrosine reagent
labeled with 18F isotope [170].
An important value for medicine have 2-fluoro- and, particularly,
6-fluoro-L-dopamine 18 labeled with 18F
isotope [171-175] which are produced by fluorination using
CH3COO18F.
Although the radiochemical yield does not exceed 25%, this reaction
has found practical application.
Dimethylphenylisopyrazolone containing an ethylene fragment under
the influence of acetylhypofluorite gives a product of fluoroacetoxylation
in 82% yield [176] . The following elimination of the acetic
acid fragments leads to 4-fluorodimethylphenyl - isopyrazolone.
The fluorination of bimane with acetylhypofluorite under
the same conditions forms difluoroderivative 19 [177]. But in CHCl3-MeNO2 system (2:1)
a mixture of mono- and difluoro derivatives is formed [161].
Biologically interesting compounds including fluorohexesestrol,
different steroids and fluorotyrosine can be readily obtained
using CH3COOF [177].
Enoles of acetates, oxo ethers, nitroalkenes and sodium salts
of different ethers are successfully fluorinated affecting
the carbon atom in the
-position at the carbonyl group. This approach appeared
a convenient enough method to produce
-fluorine-containing ketones [180,181].
Elimination of acetic acid results in formation of
-fluorine-containing unsaturated ketones [170] , among which
there is a number of biologically active compounds.
Enolate of tetralone acetate and its trimethylsylil ether under
the influence of CH3COOF reagent give 2-fluorotetralone
[30,45]. It is more convenient to use for these purposes
acetates of enoles. Thus, acetates of enoles of indanone,
tetralone and acetophenone and also trimethylsylil ether
of acetophenone under mild conditions give appropriate
-fluoro-derivatives of ketones [30]. The presence of the
benzene ring in the substrate molecule does not influence
the reaction result. It is possible to use trimethylsylil
ethers as well [174].
It is also used for selective introduction of a fluorine atom
into steroids.
Acetylhypofluorite fluorinates sugars containing the multiple
bond. So, acetylhypofluorite with 3,4,6-tri-O-acetyl-D-glucose
gives two isomeric 2-desoxy-2-fluoro-D-glucoses [83,182-188].
In nonpolar solvents (CFCl3,CCl4) the
yield of products of fluorination of sugars is approximately
4% whereas in polar solvents (CH3COOH,CH3OH,
DMF) it is slightly higher (ac. 20%) [189]. A substituent
at hydroxy-groups does not affects much the yield of the
fluorination product [189].
Table 16 shows the results of fluorination of 3,4,6-tri-O-acetyl-D-glucose
with different fluorinating reagents [183]. This is the basis
of syntheses of biochemical compounds [182,195-197]. There
was described the synthesis of 2-desoxy-2[18F]-fluoro-D-
galactose in 20% yield from galactose under the influence
of CH3COOF reagent labeled with 18F isotope [195].
This product may be used for control of selectivity and effectiveness
of chemotherapy of tumours in tomography to diagnose diseases.
Acetylhypofluorite was found to be a regioselective fluorinating
agent with regard to hetero-organic compounds and their fluorodemetalation
takes place. So, aryl derivatives of mercury [198], tin[199],silicon
[200,201], germanium [199] under action of this reagent are
converted to fluoro derivatives of benzene. The nature of
the substituent in the aryl fragment is of great importance
reflecting on the yield of the target product (see the data
of Table 17) [202,203].
The simplicity of carrying out the process and high enough regioselectivity
allows introducing 18F isotope by this method.
So, direct introduction of fluorine or of fluorine labeled
with18F isotope by the influence of CH3COOF
is carried out with aromatic derivatives of tin or mercury
derivatives [147,198,204].
The solvent is of great importance in fluorodemetalation. Fluorodestannylation
of phenyltrimethylstannane with CH3COOF at 0oC
results in fluorobenzene: 68.2% in CFCl3, 65.5%
in CCl4, 14.5% in CH2Cl2.
It follows from Table 17 that the yield of of fluorobenzene
decreases in the series Sn>Ge>Si derivatives. Fluoroaromatic
compounds are also formed in reactions of CH3COOF
with organic derivatives of germanium [199], silicon [206],
arylpentafluorosilicates [201].
Vicinal fluoro- and methoxy- derivatives are formed regioselectively
in high yields in fluorination of saturated mercury derivatives
with CH3COOF in chloroform medium [205].
This way has been realized for fluorine introduction into the
benzene ring and other heterocyclic compounds, for example
for benzodiazepine [208].
For hypofluorites, derivatives of perfluorinated aliphatic alcohols,
two groups of processes are typical: the addition to the
multiple bond and substitutive fluorination. In early reviews
[10,189,202,209] these reactions were described in detail.
But the high toxicity of trifluoromethylhypofluorite kept
a check on the research of this reagent for a long time and
only the last 20 years they have been drawn attention. The
processes were studied with a purpose of a preparatory way
to introduce fluorine into different cyclic compounds instead
of elemental fluorine reacting more hard. The processes of
addition to unsaturated substrates consist in the addition
of F and OCF3 elements to the multiple bond (spontaneously
in the absence of sources of initiation) together with the
fluorination of the latter. In the interaction of CF3OF
with olefins the formation of adducts of fluorine and trifluoromethoxysilyl
group to the multiple bond takes place [210-213].The stereochemistry
of the addition is exclusively of syn character that points
to the electrophilic nature of the reagent. The course of
the process is supposed to be via
-carbcation.
Homolytic dissociation of the O-F bond is caused by heating or
light. Addition of hypofluorites ROF to unsaturated centers
is a well-known method to produce organofluoric compounds.
Usually the reaction is carried out at low temperatures.
Hypofluorites are strong oxidizers and may cause explosions
when contact with organic molecules. A medium in which the
process is carried out influences the character of the reaction
products also. So, the carrying out of the process with CF3OF
in alcohols results in the formation of derivatives containing
the fluorine atom and alkoxyl group whereas products of addition
of F and OCF3 are formed in non-polar solvents.
The OCF3 group can be subjected to conversion
to the OH-group when the process is carried out in water
and to the splitting off under the influence of bases with
the reagent of the multiple bond.
The thermal gas-phase reaction of tetrachloroethylene at 41-71oC
results in trifluoromethyl-1,1,2,2-tetrachloro-2-fluoroethyl
ether (97.7-99.5% yield) [220].
The reaction with 1,1-diphenylethylene is demonstrative for comparison
between CF3OF and F2 [221,222].
The fluorination process of aromatic and heterocyclic compounds
under subjection to reagents of the hypofluorite class, perfluoroalkylhypofluorites,
proceeds rather smoothly affecting the carbon atoms of the
benzene ring. Thus, aniline and its N-substituted ones at
0oC for 2 hours give ortho- and para-fluoroanilines
in a yield over 60% [223]. Aprotic non-polar solvents increase
the share of ortho-ispmers. For N-substituted aniline
the reactivity is determined by the substituent nature at
the nitrogen atom. The following activity series has been
found: PhNHSO2CH3> PhNHCOCF3
PhNHCOCH3
PhNHSO2CF3.
The absence of hydrogen atoms in the benzene ring results in
the process of addition to the multiple bond. So, the interaction
of hexafluorobenzene with CF3OF under mild conditions
gives a mixture of isomeric polyfluorinated cyclohexadienes
[226]. CF3OF possesses oxidative properties that
results in its reaction with pentafluorophenol in formation
of hexafluorocyclohexadienone which gives hexafluorocyclopentadiene
under thermolysis [226,227].
These processes are suppressed when trifluoroacetic acid is used
as a solvent [224]. In this case mono- and difluoro-derivatives
are formed.
The presence in a polycyclic unsaturated system of substituents
containing oxygen atoms, OAc for example, results in replacement
of the hydrogen atom in the
-position at this group. In this case the formation
of difluoro-derivatives is also possible [232].
It is also typical for derivatives of naphthaline, anthracene
and pyrene. Their reactions with CF3OF at –78oC
give monofluoro- and difluoro-derivatives which ratio depends
on the substituent nature and structure of the aromatic molecule
[230-234].
Natural compounds containing a benzene ring or a multiple bond
also are subjected to fluorination [72,128,235-237]. Regio-
and stereoselective addition of fluorine and trifluoromethoxy
group to the multiple bond is obvious enough in the example
of the reaction of CF3OF with steroids. For example,
derivatives of oestrone 1 react with CF3OF
to form 10
-fluoro19-norandrosterone-1,4-diene-3,17-dione
2 [224].
Another examples are given in [71,128,235].
The reaction of 2,3-dimethyl-1-phenyl-3-pyrazoline-5-one with
CF3OF in a system of CF3COOH-acetone
(1:50 at room temperature) results in two products: 4,4-difluoro-3-hydroxy-2,3-dimethyl-1-phenylpyrazolidine-5-one
and 4,4-difluoro-3-methyl-1-phenyl-2-pyrazoline-5-one [224].
When this reaction is carried out in CFCl3, then
together with difluoro-derivatives also 4-fluoro-2,3-dimethyl-1-phenyl-3-pyrazoline-5-one
is formed which is converted further to difluoro derivative
in the excess of CF3OF [224].
Low-temperature fluorination of different amino-acids in a solution
of hydrogen fluoride gives
-fluoroamino-acids which are potential antimetabolites
[268-271].
The presence of such substituents as hydroxy-, alkoxy- and acetoxy-groups
at the multiple bond causes formation of
-fluoroketones under the influence of CF3OF
( in non-polar solvents, as a rule) [72,272-276].
Silyl ethers of enols behave in a similar way [72].
In most cases the use of perfluoroalkylhypofluorites is justified
by mild conditions of fluorination processes, high selectivity
and high yield of the fluorination products in comparison
with using elemental fluorine. It is of great importance
that these fluorinating agents may be successfully used for
fluorination of a number of biologically active structures,
heterocyclic compounds, amino-acids etc.. The simplest alkylhypofluorite,
CF3OF, introduces into a substrate CF3O
fragment that is easy to identify and able to be converted
to the oxy-group that may be of synthetic interest. The successful
study of the class of hypofluorites may be found fruitful
not only for clarification of the nature of hypofluorites
themselves but for the chemistry of fluorination processes
with different reagents as a whole.
The study and discussion of the mechanism of fluorination with
fluorooxy-reagents have lasted almost the same period as
this synthetic direction has existed. But the most demonstrative
arguments in favor of this or that version appeared when
such stable study objects as fluorooxytrifluoromethane, CF3OF
and cesium fluorosulfate,CsSO3OF, became available.
As it was seen from the above review, the compounds containing
the O-F bonds have the reactivity close to fluorine gas and
a stronger electrophilic character. Only some attempts have
been done with the purpose to study the reaction mechanism
of these fluorinating reagents and main investigations are
at hand. Nevertheless, many authors made their suggestions
about the ways of the course of the processes. The idea of
electrophilic character of fluorine bound with oxygen lies
in the basis of all studies.
The most vital importance in the study of the mechanism of the
reactions of fluorooxy-reagents has the addition of CF3OF
to unsaturated compounds. So, in papers [278-282] it was
shown that perfluoro-2-methyl-2-pentene and perfluoro-4-methyl-2-pentene
in the reactions with CF3OF formed products of
addition to multiple bonds of fluorine and trifluoromethoxy-group
in high yield but with low regioselectivity, whereas carrying
out the process under UV irradiation gave the adducts with
high selectivity. So, the ratio of 30/31 is 24, though the ratio of 31/32 is only
2.3. Such difference may be explained by steric factors,
polarity of reagents and stability of the intermediate radicals.
It should be noted that carrying out the process in a cell
of ESR-spectrometer at 330 and 320K made possible to obtain
distinct signals of A and Bradicals
with super fine splitting on fluorine atoms (the authors
failed to identify C and D radicals, perhaps, due to their lower stability) [278]. That
is the first example of determination of intermediate particles
in the reactions of olefins with CF3OF.
One more confirmation of the radical mechanism in the reaction
of CF3OF with unsaturated compounds was received
in the study of the kinetics of the interaction of CF3OF
with perfluoropropylene [287,288] and trichloroethylene [211].
DesMarteau has noted that CF3OF reacts with perfluorinated
olefins according to the radical mechanism with low regio-
and stereoselectivity in concentrated solvents or without
solvents[212].
It is of interest that Barton with collaborators, one among the
most competent researchers in this field of investigations,
studied the interaction of the CF3OF with unsaturated
compounds and observed the reaction course as a syn-addition
and have concluded that the process proceeds through the
formation of
-fluorocarbcation [289].
At last, the authors of papers [221,290] studying the addition
of CF3OF to aryl-olefins concluded that the process
proceeded according to the radical-ion mechanism.
In the study by Zupan with collaborators the kinetics of the
fluorination of unsaturated compounds with cesium fluorooxysulfate
in methyl alcohol has been studied. The authors proposed
the following process scheme [112]:
As it is seen from the scheme, the formation of carbcation E
may proceed in two ways, but in both cases at first
-complex A is to be generated.
The mechanism of the fluorination of olefins with cesium fluorooxysulfate
is similar. In Table 18 one can see relative rate constants
of the fluorination with this reagent of various olefins
to form products of methoxyfluorination [112]. As it is seen
from Table 18, there is a linear dependence of the first
ionization potential and the relative rate constant of the
fluorination of olefins with CsSO4F (the correlation
coefficient r =0.945). With decreasing the potential value
the rate of the reaction of the olefin with the fluorinating
agent is increasing that is in conformance with the ion mechanism
of the process. In other words, the formation of carbcation
E may proceed in two ways at least, but
in both cases
-complex A has
to be generated at first.
There are many synthetic studies, which have discussed the matter
of the reaction mechanism with fluorooxy-compounds participation.
As a rule they judge the mechanism according to the reaction
products. Though the proposed schemes are not always conclusive
enough and conclusions are often of a hypothetical character,
they have contributed to the understanding of the matter
essence.
As an example, we can refer to the study of Rosen with collaborators
[150] on the reaction of acetylhypofluorite, a source of
electrophilic fluorine, with aromatic compounds. They found
that the compounds, containing activating substituents in
the main body, gave mainly ortho-isomer as the reaction product
in a yield up to 85%. The authors conclude that in the first
stage the addition of CH3COOF to the double bond
of the benzene ring takes place, CH3COOH is then
eliminated with regeneration of the aromatic structure. But
if the elimination stage is impossible structurally, the
intermediate, CH3COOFadduct, can be isolated.
Acetylhypofluorite has a higher selectivity compared with fluorine
and CF3OF and exhibits evident oxidizing properties.
By virtue of that, one of possible ways of its interaction
with aromatic compounds in the first stage can be one-electron
oxidation of the aromatic compound to cation-radical [150].
Further conversions depend both on the nature of the substituent
in the benzene ring and on the solvent used. So, if the substituent
is a hetero-organic group, containing, for example, the mercury
atom, then a fluoro-aromatic derivative is formed exclusively.
If the substituent is NH2, the oxidizer affects,
first at all, the nitrogen atom that results in a very low
yield of a fluoroaromatic derivative, whereas with OH substituent
exclusively fluoroaromatic derivatives are formed and with
CH3 substituent there are formed methyl- and acetoxy-derivatives
together with fluorobenzenes.
Deep understanding of the course of fluorination processes with
use of various fluorinating agents allows more deliberate
improving the existing practical important methods of fluorination
and searching new effective systems for these purposes. But
independently of that, the fluorinating agents containing
the O-F and N-F bonds have contributed much to the development
of the chemistry of fluorine organic compounds.
A qualitative estimation of the fluorinating ability in the series
of fluorooxy-reagents is not a simple task, because many
of such compounds are unstable, can not be isolated individually
and studied under adequate conditions. So much a fundamental
theoretical approach to this problem proposed recently seems
more significant. Thermodynamics of the fluorination processes
has been assumed as a basis, and a qualitative criteria of
the fluorinating ability of fluorooxy-reagents has been chosen
as the reaction heat calculated taken into account the polarity
of a solvent used for the process [292].
Quantum-chemical calculations were done by MNDO, AMI, MNDO-PM-3
methods taken into account the solvent polarity, within the
frames of the model of polarizable continium developed by
Tomasi.
To compare the fluorinating abilities of fluorine “ carriers”
of R-OF type, their interaction with pyridine, as a fluorination
object, was chosen as a reference reaction. This reaction
is attractive because in addition to the comparative estimation
of the carriers with each other it makes possible to compare
them with a classical fluorinating reagent, N-fluoropyridinium:
if the reaction enthalpy is negative, then the R-OF reagent
under consideration exceeds N-fluoropyridinium cation in
the fluorinating ability and yields to it in this respect
if the reaction enthalpy is positive.
To fluorinate the fluorinating ability of typical fluorooxy-reagents
in solvents of different polarity, calculations of the heat
efficiencies (
Hreacsolvent) were made for the model exchange
reactions (1-5).
To calculate the heat efficiencies of these reactions in gas
phase
Hreac (g) and in solvents of different polarity
Hreac(s), the formation enthalpies
Hf (g) of the reagents and products with complete
optimization of geometry of the molecules were calculated.
For charged molecular systems there was calculated free Gibbs
energy
G
(s) of formation of a system of “polarized molecule + polarization
field” ,taken into account the solvent influence within the
limits of PCM model at different values of the dielectric
constant
.
As it is seen from the data of Table 20, reactions under investigation
(1-5) in gas phase (
=1),
given for comparison, are very endothermic:
Hreac reaches 100 kkal/mole and are positive.
At transition to polar solvents, a principal change of the
heat reaction efficiencies occurs: they become negative,
i.e. exothermic. Even in solvents of middle polarity ( the
dielectric constant
=20-30) the equilibrium of reactions (1-5) is shifted to
the right-hand side, in other words, the R-OF reagents under
consideration exceed N-fluoropyridinium cation in the fluorinating
ability.
The comparison of the R-OF reagents with each other looks especially
demonstrative : it is seen from Table 20 that according to
the fluorinating ability they form the following series:
The series corresponds to the ideas of synthesis researchers
about connection of the structure of the R-OF reagents with
their reactivity. That is an additional evidence of reliability
of the proposed thermodynamic method.
In conclusion, one should take into account the variation of
the Gibbs curves (Fig.1) directly connected with the solvation
effect : already within a range of
= 30-40 the dependence of
G/
degenerates , i.e. the solvation reaches saturation. Obviously
, the solvents with such dielectric constant can be acceptable
enough for fluorination.
As a whole, the results of the calculations of the heat efficiencies
have clearly demonstrated the change of the fluorinating
ability of the R-OF reagents in a form convenient for comparison
in dependence on the solvent polarity. This method is the
most fruitful and to some extent is unique for estimation
of the fluorinating ability of the R-OF reagents and their
comparison with each other.
Usually the choice of a fluorinating agent is made taken into
account its availability, selectivity of the fluorination,
readiness of the process course and equipment, safety of
handling. It is customary to compare these factors with elemental
fluorine using, because its use is the most efficient process
of production of organofluorine compounds. But the high reactivity
of elemental fluorine requires application of special methods
that increases significantly the cost of the target products.
This paper reviews examples of application of compounds containing
the O-F bonds as effective fluorinating agents. Their abilities
for selective fluorination of different classes of compounds
have been shown and compared. The combination of potential
electron properties and steric effects is typical when hydrogen
atoms are replaced with fluorine in organic molecules and
is widely used in organic chemistry. Besides, in addition
to the direct method of fluorination with elemental fluorine,
new fluorinating reagents have appeared, which sometimes
have some advantages compared with elemental fluorine and
conventionally used hydrogen fluoride and fluorides of transition
metals. The new fluorinating reagents do not replace the
existing ones produced commercially but supplement with them.
More over, a number of them have been produced on an industrial
scale that makes possible their widespread study. At the
same time their practical application allows changing economic
factors and environment of production of fluorine-containing
materials. Widespread investigations in this field have become
a basis for creation of materials perspective for new technique
and medicine and great technological efforts of these studies
have promoted complete use of elemental fluorine in organic
synthesis.
On the whole, there has been formulated a task of application
of fluorinating agents not only for realization of the fluorination
processes but for their application for different synthetic
purposes. In our review we gave some new areas of application
of compounds containing the O-F bonds for processes of oxidation
and generation of reactive electrophilic particles.
We assume that the analysis of the existing data and some formulated
conclusions will be useful not only for chemists working
in the fluorine chemistry, but also for experts using new
materials in their work and solving new complex technical
tasks. The presented review on the chemistry of compounds
containing the O-F bonds places at disposal of experts in
this important and dynamically developing field a possibility
to become familiar with the new ideas, the latest achievements
and results of the investigations and also with unsolved
problems.
References1. Novoe v tekhnologii soedinenij ftora. (Red.
N. Isikawa). Per. s yaponsk. pod. red.A.V. Fokina. M.: Mir. 1984. 592s.
2. Organofluorine
Compounds in Medicinal Chemistry and Biomedical Application. (Eds. R.
Filler, R.Y. Kobayashi, L.M. Yagupolskii). Elsevier Science, Amsterdam. 1993.
386P.
3. Synthetic
Fluorine Chemistry. (Eds. G.A. Olah, R.D. Chambers, G.K.S. Prakash). John
Wiley and Sons. A Wiley-Interscince Publication, New York. 1992.
4. Organofluorine
Chemistry, Principles and Commercial Application. (Eds. R.E. Banks, B.E.
Smart, J.C. Tatlow). New York, Plenum. 1994.
5. G.G. Furin,
C.P. Gambaretto. Direct Fluorination of Organic Compounds.CLCUP,
Padova, Italy, 1996, 212 P.
6. New
fluorinating agents in organic synthesis. (Eds. L.S. German, S. Zemskov).
Springer-Verlag, New York. 1989.
7. S. Rozen.
In The Chemistry of Halides, Supplement D2; S. Patai, Z. Rappoport.
Eds.; John Wiley & Sons Ltd, New York, 1995. Chapter 12, p. 629.
8. M. Zupan.
Introduction of Fluorine with agents containing O-F bonds. Houben-Weyl. Methods
of Organic Chemistry. Organo-Fluorine Compounds. (Eds. B. Baasner, H.
Hagemann, J. C. Tatlow), Thieme Stuttgart, New York. E 10 a,
270-304 (1998).
9. M. Zupan, S.
Stavber. The role of reagent structure in the mild introduction of a fluorine
atom into organic molecules. In Trends in Organic Chemistry.
Council of Scientific Information. Trivandrum. India. V, 11 (1995).
10. S. Rozen.
Chem. Rev. 96, 1717 (1996).
11. S.
Rozen. Accounts Chem. Res. 29, 243 (1996).
12. S. Rozen.
Synth. Fluorine Chem. 143 (1992); Chem.Abstr. 117,
234329a (1992).
13. F.M.
Muhametshin. Uspekhi khimii. 49, 1260 (1980).
14. R.H. Hesse. Isr.J.Chem.17, 60 (1978).
15.D.H.R.Barton,L.S.Godhino,R.H.Hesse,M.M. Pechet J. Chem. Soc., Chem. Commun. 804 (1968).
16. D.H.R. Barton,
L.J. Danks, A.K. Ganguly, R.H. Hesse, G. Tarzia, M.M. Pechet J. Chem.
Soc., Chem. Commun.227 (1969)
17. S. Rozen, M.
Kol. J. Org. Chem. 55, 5155 (1990).
18. C.J.
Hoffman Chem. Ber. 64, 91 (1964).
19. J.A.C.
Allison, G.H. Cady J. Am. Chem. Soc. 81, 1089 (1959).
20. R.S. Porter,
G.H. Cady J. Am. Chem. Soc. 79, 5625 (1957).
21. G. Yang, Z.-M.
Yang, Y. Liu et al. Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 1051350
(1991); Chem. Abstr. 116, 6154p (1992).
22. K.B. Kellog,
G.H. Cady J. Am. Chem. Soc. 70, 3986 (1948).
23. M. Lustig,
A.R. Pitochelli, J.K. Ruff. J. Am. Chem. Soc. 89, 2841
(1967).
24. R.L. Cauble,
G.H. Cady. J. Am. Chem. Soc. 87, 5161 (1967).
25. F.A. Hohorst,
J.M. Shreeve. J. Am. Chem. Soc. 89, 1809 (1967)
.
26. F.A.
Hohorst. Inorg. Synth. 11, 143 (1968).
27. M.J. Fifolt,
R.T. Olczak, R.F. Mundhenke. J. Org. Chem. 50, 4576
(1985).
28. D.H.R. Barton,
R.H. Hesse, M.M. Pechet, G. Tarzia, H.T. Toh, N.D. Westcott. J. Chem.
Soc., Chem. Commun. 122 (1972).
29. C. Fischer, J.
Steinbach. Forschungszent. Rossendorf. [Ber], FZR (FZR-200) 174
(1997); Chem. Abstr. 128, 308055j (1998).
30. S. Rozen, Y.
Bereket, M. Kol. J. Fluorine Chem. 61, 141 (1993).
31. S. Rozen, O.
Lerman, M. Kol, D. Hebel. J. Org. Chem. 50, 4753
(1985).
32. D.M. Jewett,
J.F. Potocki, R.E. Ehrenkaufer. J. Fluorine Chem. 24,
477 (1984).
33. S. Rozen, O.
Lerman, M. Kol. J. Chem. Soc., Chem. Commun. 443 (1981); Chem.
Abstr. 95, 114749t (1981).
34. O. Lerman, Y.
Tor, S. Rozen. J. Org. Chem. 46, 4631 (1981).
35. D. Hebel, O.
Lerman, S. Rozen. J. Fluorine Chem. 30, 141 (1985).
36. C.Y. Shiue,
P.A. Salvadori, A.P. Wolf, J.S. Fowler, R.R. MacGregor. J. Nucl. Med. 23,
899 (1982); Chem. Abstr. 98, 54389a (1983).
37. M. Diksic, D.
Jolly. Int. J. Appl. Radiat. Isotop. 34, 893 (1983).
38. D.M. Jewett,
J.F. Potocki, R.E. Ehronkaufer. Synth. Commun. 14, 45
(1984); Chem. Abstr. 99, 122776x (1983).
39. S. Rozen, O.
Lerman. J. Org. Chem. 45, 672 (1980).
40. T.H. Appelman,
M.H. Mendelsohn, H. Kim. J. Am. Chem. Soc. 107, 6515
(1985).
41. G.T. Bida, N.
Satyamurthy, J.R. Barrio. J. Nucl. Med. 25, 1327
(1984).
42. S. Rozen, Y.
Bareket. J. Chem. Soc., Chem. Commun. 1959 (1994).
43. W.E. Barnette,
R.C. Wheland, W.J. Middleton, S. Rozen. J. Org. Chem. 50,
3698 (1985).
44. Pat.
4568478 US (1986); Chem. Abstr. 105, 42337g
(1986).
45. S. Rozen, D.
Hebel. J. Org. Chem. 55, 2621 (1990).
46. E.A. Appelman,
D. French, E. Mishani, S. Rozen. J. Am. Chem. Soc. 115,
1379 (1993).
47. M. Kol, S.
Rozen, E. Appelman. J. Am. Chem. Soc. 113, 2648 (1991).
48. G.L. Gard,
G.H. Cady. Inorg. Chem. 4, 594 (1965).
49. S. Stavber, M.
Zupan. J. Org. Chem. 50, 3609 (1985).
50. Fr. Fischer,
K. Humpert. Helv. Chim. Acta. 9, 602 (1926).
51. E.H. Appelman,
L.J. Basile, R.C. Thompson. J. Am. Chem. Soc. 101, 3384
(1979).
52. D.F.
Shellhamer, C.M. Curtis, D.R. Hollingsworth, M.L. Ragains, R.E. Richardson,
V.L. Heasley, G.E. Heasley. Tetrahedron Lett. 23, 2157
(1982).
53. D.F.
Shellhamer, C.M. Curtis, M.C. Chiaco, T.E. Harris, R.D. Henderson, W.S.C. Low,
B.T. Metcalf, M.C. Willis, V.L. Heasley, R.D. Chapman. J. Chem. Soc.,
Perkin Trans. 2. 401 (1991).
54. Y. Apeloig, K.
Albrecht. J. Am. Chem. Soc. 117, 9564 (1995).
55. S. Rozen, A.
Bar-Haim. J. Fluorine Chem. 74, 229 (1995).
56. S. Rozen, E.
Mishani, M. Kol. J. Am. Chem. Soc. 114, 7643 (1992).
57. O. Lerman, Y.
Tor, D. Hebel, S. Rozen. J. Org. Chem. 49, 806 (1984).
58. S. Rozen, E.
Mishani, M. Kol, I. Ben-David. J. Org. Chem. 59, 4281
(1994).
59. I. Ben-David,
T. Mishani, S. Rozen. J. Org. Chem. 63, 4632 (1998).
60. M. Kol, S.
Rozen. J. Org. Chem. 58, 1593 (1993).
62. E.H. Appelman,
A.W. Jache. J. Am. Chem. Soc. 109, 1754 (1987).
61. E.H.
Appelman. Acc. Chem. Res. 6, 113 (1973).
63. M.H. Studier,
E.H. Appelman. J. Am. Chem. Soc. 93, 2349 (1971).
64. J.C. Hindman,
A. Svirmickas, E.H. Appelman. Chem. Phys. 57, 4542
(1972).
65. H. Kim, E.H.
Appelman. J. Chem. Phes. 76, 1664 (1982).
66. W. Poll, G.
Pawelke, D. Mootz, E.H. Appelmen. Angew. Chem. Int. Ed. Engl. 27,
392 (1988).
67. K.G.
Migliorese, E.H. Appelman, M.N. Tsangaris. J. Org. Chem. 44,
1711 (1979).
68. R.F. Merritt,
J.K. Ruff. J. Org. Chem. 30, 328 (1965).
69. L.A. Andrews,
R. Bonnett, E.H. Appelman. Tetrahedron. 41, 781
(1985).
70. I. Shahak, S.
Rozen. Isr. J. Chem. 12 (1968).
71. W.J.
Middleton, E.M. Bingham. J. Am. Chem. Soc. 102, 4845
(1980).
72. E.H. Appelman,
R. Bonnett, B. Mateen. Tetrahedron. 33, 2119 (1977).
73. M.H. Studier,
E.H. Appelman. J. Am. Chem. Soc. 93, 2349 (1971).
74. O. Dunkelberg,
A. Haas, M.F. Klapdor, D. Mootz, W. Poll, E.H. Appelman. Chem. Ber. 127,
1871 (1994).
75. E.H. Appelman,
O. Dunkelberg, M. Kol. J. Fluorine Chem. 56, 199
(1992).
76. M.H. Hung,
B.E. Smart, A.E. Feiring, S. Rozen. J. Org. Chem. 56,
3187 (1991).
77. R.
Beckerbauer, B.E. Smart, Y. Bereket, S. Rozen. J. Org. Chem. 60,
6186 (1995).
78. M. Kol, S.
Rozen. J. Chem. Soc., Chem. Commun. 567 (1991).
79. S. Rozen, A.
Bar-Haim, E. Mishani. J. Org. Chem. 59, 6800 (1994); Chem.
Abstr. 121, 254936g (1994).
80. S. Rozen, Y.
Bareket, M. Kol. Tetrahedron. 49, 8169 (1993).
81. S. Rozen, S.
Dayan, Y. Bareket. J. Org. Chem. 60, 8267 (1995).
82. R. Bonnett,
R.J. Ridge, E.H. Applelman J. Chem. Soc., Chem. Commun. 310 (1978).
83. S. Rozen, M.
Brand, N. Kol J. Am. Chem. Soc. 111, 8325 (1989).
84. S. Dayan, J.
Almog, O. Khodzhaev, S. Rozen. J. Org. Chem. 63, 2752
(1998).
85. S. Rozen, M.
Brand. Angew. Chem. Int. Ed. Engl. 25, 554 (1986).
86. S. Rozen, Y.
Bareket. J. Chem. Soc., Chem. Commun. 627 (1996); Chem.
Abstr. 124, 342189 (1996).
87. M. Diksic, P.
Di Raddo. Tetrahedron Lett. 25, 4885 (1984).
88. S. Rozen, Y.
Bareket.J. Org. Chem. 62, 1457 (1997).
89. Patent US
5206440 (1993)
90. A.F. Feiring,
S. Rozen, E.R. Wonchoba. 15th International Symposium of Fluorine
Chemistry.Vancouver, Canada, August 2-7, 1997, Abstracts SL-5.
91. S. Rozen,
B.-H. Arie, E. Mishani. J. Org. Chem. 59, 1208 (1994).
92. E.H. Appelman,
L.J. Basile, H. Kim. Inorg. Chem. 21, 2801 (1982).
93. E.H. Appelman. Inorg.
Synth. 24, 22 (1986).
94. D.P. Ip, C.D.
Arthur, R.E. Winans, E.H. Appelman. J. Am. Chem. Soc. 103,
1964 (1981).
95. E. Gebert,
E.H. Appelman, A.H. Reis Inorg. Chem. 18, 2465 (1979).
96. R.C. Thompson,
E.H. Appelman Inorg. Chen. 19, 3248 (1980).
97. W.V. Steele,
P.A. O`Hare, E.H. Appelman. Inorg. Chem. 20, 1022
(1981).
98. S.T.
Purington, B.S. Kagen, T.B. Patrick. Chem. Rev. 86, 997
(1986).
99. M. Zupan Vestn.
Slov. Kem. Drus. 31, 151 (1984).
100. S. Stavber,
M. Zupan. J. Chem. Soc., Chem. Commun. 563 (1983).
101. M.R. Bryce,
R.D. Chambers, S.T. Mullins, A. Parkin. J. Chem. Soc., Chem. Commun.
1623 (1986).
102. T.B. Patrick,
D.L. Darling. J. Org. Chem. 51, 3242 (1986).
103. S. Stavber,
M. Zupan. J. Chem. Soc., Chem. Commun. 795 (1981); Chem.
Abstr. 96, 6108v (1982).
104. S. Stavber,
M. Zupan. Tetrahedron. 42, 5035 (1986).
105. S. Stavber,
M. Zupan. J. Org. Chem. 52, 919 (1987).
106.S.
Stavber, M. Zupan. 8th Int. IUPAC conf.org.Synth., Helsinki, 23-27
July, 1990, Abstracts, Helsinki, 1990, C.122.
107. S. Stavber,
M. Zupan. J. Chem. Soc., Chem. Commun. 148 (1981); Chem.
Abstr. 95, 80346s (1981).
108. S. Stavber,
M. Zupan. J. Fluorine Chem. 17, 597 (1981).
109. S. Stavber,
M. Zupan. J. Org. Chem. 56, 7347 (1991).
110. E.H.
Appelman, L.J. Basile, R. Hayatsu. Tetrahedron. 40, 189
(1984).
111. L.E.
Andrews, R. Bonnett, A.N. Kozyrev, E.H. Appelman. J. Chem. Soc., Perkin
Trans. 1. 1735 (1988).
112. S. Stavber,
T. Sotler-Pecan, M. Zupan. Tetrahedron. 50, 12235
(1994).
113. M. Zupan, T.
Sotler, M. Metelko, S. Stavber. J. Fluorine Chem. 58,
347 (1992).
114. G.W.M.
Visser, B.V. Halteren, J.D.M. Herscheid, G. Brinkman, A. Hoekstra. J.
Labelled Compounds Radiopharm. 21, 1185 (1984).
115. N.S. Zefirov,
V.V. Zdankin, A.S. Koz'min, A.A. Fainzilberg, A.A. Gakh, B.I. Ugrak , S.V.
Romaniko.Tetrahedron. 44, 6505 (1988).
116. N.S. Zefirov, V.V. Zhdankin, A.A. Gakh, B.I. Ugrak, S.V.
Romaniko, A.S. Koz'min, A.A. Fainzilberg. Izv. AN SSSR.
Ser.khim. 2636 (1987)
117. M. Zupan, M. Metelko,
S. Stavber. J. Chem. Soc., Perkin Trans, I. 2851 (1993).
118. M. Zupan, A.
Pollak. J. Org. Chem. 42, 1559 (1977).
119. S. Stavber,
I. Kosir, M. Zupan. J. Fluorine Chem. 54, 268 (1991).
120. S. Stavber,
I. Kosir, M. Zupan. J. Chem. Soc., Chem. Commun. 274 (1992).
121. S.Stavber,
Z. Planinsek, M. Zupan. J. Org. Chem. 57, 5334 (1992).
122. Z. Planinsek,
S. Stavber, M. Zupan. J. Fluorine Chem. 45, 141 (1989).
123.S.
Stavber, Z. Planinsek, M. Zupan. Tetrahedron Lett. 30,
6095 (1989).
124. S. Stavber,
I. Kosir, M. Zupan. J. Org. Chem. 62, 4916 (1997).
125. M. Zupan, S.
Stavber. Tetrahedron. 48, 5875 (1992).
126. S. Stavber,
B. Sket, B. Zajc, M. Zupan. Tetrahedron. 45, 6002
(1989).
127. Y. Kobayashi,
M. Hakazawa, I. Kumadaki, T. Taguchi, E. Ohshima, N. Ikekawa, Y. Tanaka, H.F.
DeLuca. Chem. Pharm. Bull. 34, 1568 (1986).
128. T.B. Patrick,
R. Mortezania. J. Org. Chem. 53, 5153 (1988).\
129. A.A. Gakh,
S.V. Romaniko, B.I. Ugrak, A.A. Fainzilberg. Izv. AN SSSR. Ser. khim. 1615
(1991)
130.S.
Stavber, M. Zupan. Tetrahedron. 45, 2737 (1989).
131. D.H.R.
Barton. Pure Appl. Chem. 49, 1241 (1977).
132. S. Stavber,
M. Zupan. J. Fluorine Chem. 45, 140 (1989).
133. S. Stavber,
M. Zupan. Tetrahedron Lett. 31, 775 (1990).
134.A.A.
Gakh, S.V. Romaniko, B.I. Ugrak, A.A. Fainzilberg. Tetrahedron. 47,
7447 (1991).
135. P.A.G.
O`Hare, H.E. Flowton, E.H. Appelman. J. Chem. Thermodyn. 14,
1191 (1982).
136. A.A. Gakh,
S.V. Romanico. J. Fluorine Chem. 54, 210 (1991).
137. S. Stavber,
M. Zupan. Tetrahedron. 46, 3093 (1990).
138. M.R. Bryce,
R.D. Chambers, S.T. Mullins, A. Parkin. Bull. Soc. Chim. Fr. 930
(1986).
139. M.
Zupan. J. Fluorine Chem. 54, 212 (1991).
140. H.F. Hodson,
D.J. Madge, A.N.Z. Slawin, D.A. Widdowson, D.J. William. Tetrahedron. 50,
1899 (1994).
141. H.F. Hodson,
D.J. Madge, D.A. Widdowson. Synlett. 831 (1992).
142. J.M. Clough,
L.J. Diorazio, D.A. Widdowson. Synlett. 761 (1990).
143. L.J.
Diorazio, D.A. Widdowson, J.M. Clough. J. Chem. Soc., Perkin Trans. 1.
421 (1992).
144. L.J.
Diorazio, D.A. Widdowson, J.M. Clough. Tetrahedron. 48,
8073 (1992).
145. H.F. Hodson,
D.J. Madge, D.A. Widdowson. J. Chem. Soc., Perkin Trans, I, 2965
(1995).
146. M.J.
Adam. Chem. Eng. News. 2 (1985).
147. G.W.M.
Visser, C.N.M. Bakker, B.W. Halteren, J.D.M. Herscheid, G.A. Brinkman, A.
Hoekstra. J. Org. Chem. 51, 1886 (1986).
148. Pat.
4766243 US (1988); Chem. Abstr. 110, 192448m
(1989).
149. W.G. Dauben,
L.J. Greenfield. J. Org. Chem. 57, 1597 (1992).
150. A.S. Kiselev,
A.A. Gakh, V.V. Semenov. Tetrahedron Lett. 31, 7396
(1990).
151. J.S. Fowler,
C.Y. Shine, A.P. Wolf, P.A. Salvadori, R.R. MacGregor. J. Labell. Comp.
Radiopharm. 19, 1634 (1982).
152. Pat
4535136 US (1985); Chem. Abstr. 103, 178795w
(1985).
153. T.
Umemoto. Chem. Ind. 38, 129 (1987).
154. G.W.M.
Visser, C.N.M. Bakker, B.W. v.Halteren, J.D.M. Herscheid, G.A. Brinkman, A.
Hoekstra. Recl. Trav. Chim. Pays-Bas. 105, 214
(1986); Chem. Abstr. 106, 101537t (1987).
155. S. Rozen, D.
Habel, D. Zamir. J. Am. Chem. Soc. 109, 3789 (1987).
156. D. Hebel, S.
Rozen. J. Org. Chem. 53, 1123 (1988).
157. S. Rozen, D.
Habel. Heterocycles. 28, 249 (1989).
158. D. Hebel, S.
Rozen. J. Org. Chem. 56, 6298 (1991).
159. G.W.M.
Visser, S. Boele, B.W.V. Helteren, G.H.N. Knops, J.D.M. Herscheid, G.A.
Brinkman, A. Hoekstra. J. Org. Chem. 51, 1466 (1986).
160. M. Diksic, S.
Farrokhzad, L.D. Colebrook. Can. J. Chem. 64, 424
(1986).
161. M. Diksic, P.
Diraddo. Int. J. Appl. Radiat. Isot. 36, 643 (1995).
162. E.M. Kosover,
D. Hebel, S. Rozen, A.E. Radkowski. J. Org. Chem. 50,
4152 (1985).
163. Jpn.
Kokai Tokkyo Koho JP 62 138482 (1987); Chem. Abstr. 107,
154698y (1987).
164.G.W.M.
Visser, R. Wedzinga, R.P. Klok, J.D.M. Herscheid. J. Chem. Soc., Perkin
Trans 2. 231 (1994).
165.G.W.M.
Visser, R.H. Herder, F.J. de Kanter, J.D.M. Jherscheid. J. Chem. Soc.,
Perkin Trans. 1. 1203 (1988).
166. G.W.M.
Visser, R.E. Herder, P. Noordhuis, O. Zwaagstra, J.D.M. Herscheid. J.
Chem. Soc., Perkin Trans. 1.2547 (1988).
167. H.C.J.
Ottenheijm, J.D.M. Herscheid. Chem. Ber. 86, 697
(1986).
168. A. Luxen,
J.R. Barrio, N. Satyamurthy, G.T. Bida, M.E. Phelps. J. Fluorine Chem. 36,
83 (1987).
169.D.
Hebel, K.L. Kirk, L.A. Cohen, V.M. Labroo. Tetrahedron Lett. 31,
619 (1990).
170. O.T. Dejesus,
J.J. Sunderland, J.R. Nickles, J. Mukherjee, E.H. Appelman. Int. J.
Appl. Radiat. Isot. 41, 433 (1990); Chem. Abstr. 113,
78934 (1990).
171. R. Chirakal,
G. Firnau, J. Couse, E.S. Garnett. Int. J. Appl. Radiat. Isot. 35,
651 (1984).
172. R. Chirakal ,
E.S. Garnett, G.J. Schrobilgen, C. Nahmias, G. Firnau. Chem. Ber.
47 (1991).
173. M.J. Adam, S.
Jivan. J. Labelled. Compd. Radiopharm. 31, 39
(1992).
174. Pat.
5510522 US (1996); Chem. Abstr. 125, 59128
(1997).
175. M. Namavari,
N. Satyamurthy, J.R. Barrio. J. Fluorine Chem. 74, 113
(1995).
176 D. Habel, O.
Lerman, S. Rozen. Bull. Soc. Chim. Fr. 861 (1986).
177 G.W.M. Visser,
P. Noordhuis, O. Zwaagstra, J.D.M. Herscheid, A. Hoekstra. Int. J.
Appl. Radiat. Isotop. 37, 1074 (1986).
178 G. Lacan, N.
Satyamurthy, J.R. Barrio. J. Fluorine Chem. 74, 211
(1995); J. Org. Chem. 60, 227 (1995).
179. K.
Franken. Ber. Kernforschungsanlage Julich. 1 (1987);РЖХим. 1988, 10Ж377.
180. S. Rozen, M.
Brand. Synthesis. 665 (1985).
181. O. Lerman, S.
Rozen. J. Org. Chem. 48, 724 (1983).
182. M.J. Adam,
B.O. Pate, J.R. Nesser, L.D. Hall. Carbohyd. Res. 124,
215 (1983).
183. G.K.
Mulholland, R.E. Ehrenkaufer. J. Org. Chem. 51, 1482
(1986).
184. H.
Vyplel. Chimia. 39, 305 (1985).
185. H. Vyplel, D.
Scholz, H. Loibner, M. Kern, K. Bednarik, H. Schaller. Tetrahedron Lett. 33,
1261 (1992).
186. R.E.
Ehrenkaufer, J.F. Potocki, D.M. Jewett. J. Nucl. Med. 25,
333 (1984); Chem. Abstr. 101, 55431a (1984).
187. Eur.
Pat. Appl. EP 281067 (1988); Chem. Abstr. 110,
95716q (1989).
188. N.
Satyamurthy, G.T. Bida, H.C. Padgett, J.R. Barrio. J. Carbohydr. Chem. 4,
489 (1985); Chem. Abstr. 105, 60841w (1986).
189. C.Y. Shiue,
A.P. Wolf. J. Nucl. Med. 26, 129 (1985); J.
Fluorine Chem. 31, 255 (1986).
190.J.S.
Cornelis, J.D.M. Herscheid, G.W.M. Visser, A. Hoekstra. Int. J. Appl.
Radiat. Isotop. 36, 111 (1985).
191. M.J. Adam,
T.J. Ruth, S. Jivan, P.D. Pate. J. Labell. Comp. Radiopharm. 21,
11 (1984).
192. K. Dax, B.I.
Glanzer, G. Schulz, H. Vyplel. Carbohydr. Res. 162, 13
(1987).
193. Jpn.
Kokai Tokkyo Koho JP63 93734 (1988); Chem. Abstr. 109,
229725g (1988).
194. J. Steinbach,
R. Bergmann, G.J. Beuer, K. Guenther. Zentralinst. Kernforsch.
Rossendorf. Dresden. [Ber.], ZfK, ZfK-711, 23 (1990); Chem. Abstr. 116,
41854p (1992).
195. F.
Oberdorfer, B.-C. Traving, W. Maier-Borst, W.E. Hull. J. Labell. Comp.
Radiopharm. 25, 465 (1988);РЖХим. 1988, 20Е9.
196. M.J. Adam. J.
Chem. Soc., Chem. Commun. 730 (1982).
197. M. Dikic, D.
Jolly. Int. J. Appl. Radiat. Isot. 37, 1159 (1986).
198. G.W.M.
Visser, B.W. Halteren, J.D.M. Herscheid, G.A. Brinkman, A. Hoekstra. J.
Chem. Soc., Chem. Commun. 655 (1984).
199.H.H.
Coenen, S.M. Moerlein. J. Fluorine Chem. 36, 63 (1987).
200. M. Speranza,
C.Y. Shine, A.P. Wolf, D.S. Wilbur, G. Angeloni. J. Fluorine
Chem. 30, 97 (1985).
201. M. Speranza,
C.Y. Shine, A.P. Wolf, D.S. Wilbur, G. Angeloni. J. Labell. Compounds
Radiopharm. 21, 1189 (1984).
202. A. Luxen,
J.R. Barrio. Tetrahedron Lett. 29, 1501 (1988).
203. A. Luxen, M.
Perlmuller, J.R. Barrio. J. Labell. Comp. Radiopharm. 26,
1 (1989).
204. M.J. Adam,
T.J. Ruth, S. Javan, B.D. Pate. J. Fluorine Chem. 25,
329 (1984).
205. D. Hebel, S.
Rozen. J. Org. Chem. 52, 2588 (1987).
206. M. Speranza,
C.Y. Shine, A.P. Wolf, D.S. Wilbur, G. Angeloni. J. Chem. Soc., Chem.
Commun. 1448 (1984).
207. M. Namavari,
N. Satyanurthy, M.E. Phelps, J.R. Barrio. Int. J. Appl.
Radiat. Isot. 44, 527 (1993); Chem. Abstr. 119,
96092 (1993).
208. T. Duelfer,
P. Johnstrom, S. Stone-Elander, A. Holland, C. Halldin, M. Haaparanta, O.
Solin, J. Bergman, M. Steinman, G. Sedvall. J. Labell. Comp. Radiopharm. 29,
1223 (1991).
209. M. Tada, T.
Matsuzawa, K. Yamaguchi, Y. Abe, H. Fukuda, M. Itoh, H. Sugiyama, I. Ido, T.
Takahashi. Carbohydr. Res. 161, 314 (1987).
210. A. Saekiya,
K. Ueda. Chem. Lett. 609 (1990).
211. H. DiLoreto,
J. Gzarnowskii.J. Fluorine Chem. 66, 1 (1991).
212. K.K. Johri,
D.D. DesMarteau. J. Org. Chem. 48, 242 (1983).
213. D.H.R.
Barton, R.H. Hesse, G.P. Jackmann, L. Ogunkoya, M.M. Pechet. J. Chem.
Soc., Perkin Trans, I, 739 (1974).
214. Pat. Germany
2136008 (1970); Chem. Abstr. 76, 154488 (1972).
215. M.S. Afonso,
H.J. Schumacher. Int. J. Chem. Kinet. 16, 103 (1984).
216. N.Y. Wang,
F.S. Rowland. J. Phys. Chem. 89, 5154 (1985).
217. J.
Czarnowski. J. Chem. Soc., Faraday Trans, 2, 85, 1425
(1989).
218. C. Kelly,
H.W. Sidebottom, J. Treacy, O. Nielsen. J. Chem. Phys. Lett. 218,
29 (1994).
219. F.A. Hoherst,
J.M. Shreeve. Inorg. Chem. 7, 624 (1968).
220. H.D. Loreto,
J. Czarnowski. J. Fluorine Chem. 74, 199 (1995).
221. T.B. Patrick,
G.L. Cantrell, S.M. Inga. J. Org. Chem. 45, 1409
(1980).
222. J.B. Levy,
D.M. Sterling. J. Org. Chem. 50, 5615 (1985).
223. M.J. Fifolt,
R.T. Olczak, R.F. Mundhenke. J. Org. Chem. 50, 4576
(1985).
224. J. Airey,
D.H.R. Barton, A.K. Ganguly, R.H. Hesse, M.M. Pechet. Anales de Quimica. 70,
871 (1974).
225. P.C.
Belanger, C.K. Lau, H.W.R. Williams, C. Dufresne, J. Scheigetz. Can. J.
Chem. 66, 1479 (1988).
226. R.R. Soelch,
G.W. Matier, D.M. Lemal. J. Org. Chem. 50, 5845 (1985).
227. M.S. Toy,
R.S. Stringham. J. Fluorine Chem. 5, 31 (1973).
228. D.H.R.
Barton, R.H. Hesse, M.M. Pechet, H.T. Toh. J. Chem. Soc., Perkin Trans,
I, 732 (1974).
229. M. Sequin,
J.C. Michaud, J.J. Basselier. J. Fluorine Chem. 16, 37,
201, 506 (1980).
230. T.B. Patrick,
E.C. Hayward. J. Org. Chem. 39, 2120 (1974).
231. T.B. Patrick,
M.H. LeFaivre, T.E. Koertge. J. Org. Chem. 41, 3413 (1976).
232.T.B.Patrick,
G.L. Contrell, C.Y. Chang. J. Am. Chem. Soc. 101, 7434
(1979).
233. D.H.R.
Barton, A.K. Ganguly, R.H. Hesse, S.N. Loo, M.M. Pechet. J. Chem. Soc.,
Chem. Commun. 806 (1968).
234. D.H.R.
Barton, R.H. Hesse, L. Ogunkoya, N.D. Westcott, M.M. Pechet. J. Chem.
Soc., Perkin Trans. I. 2889 (1972).
235. P.W.
LeQuesne, K. Allam, A.B. Sami, K.D. Onan, R.H. Purdy. Steroids. 53,
649 (1989).
236. S. Rozen, I.
Shahak, E.D. Bergmann. J. Org. Chem. 40, 2966 (1975).
237. D.H.R.
Barton, L.J. Danks, A.K. Ganguly, R.H. Hesse, G. Tarzia, M.M. Pechet. J.
Chem. Soc., Perkin Trans, I, 101 (1976).
238. J. Adamson,
A.B. Foster, L.D. Hall, R.H. Hesse. J. Chem. Soc., Chem. Commun.
309 (1969).
239. J. Adamson,
D.M. Marcus. Carbohydr. Res. 22, 257 (1972).
240. P.W. Kent,
S.D. Dimitrijevich. J. Fluorine Chem. 10, 455
(1977. Carbohydr. Res. 15, 351 (1970).
241. C.G.
Butchard, P.W. Kent. Tetrahedron. 27, 3457
(1971); 35, 2439 (1979).
242. T.S. Chou,
P.C. Heath, L.E. Patterson, L.M. Poteet, R.E. Lakin, A.H. Hunt. Synthesis, 565
(1992).
243. A. Dessinges,
F.C. Escribano, G. Lukacs, A. Olesker, T.T. Thang. J. Org. Chem. 52,
1633 (1987).
244. J. Adamson,
A.B. Foster, L.D. Hall, R.N. Johnson, R.H. Hesse.
245. M.J. Robins,
M. MacCoss, S.R. Naik. J. Am. Chem. Soc. 98, 7381
(1976).
246. M.J. Robins,
G. Ramani, M. MacCoss. Can. J. Chem. 53, 1302 (1975).
247. T. Ido, C.-N.
Wan, V. Casella, J.S. Fowler, A.P. Wolf, M. Reivich, D.E. Kuhl. J.
Labell. Comp. Radiopharm. 14, 175 (1978).
248. O. Miyashita,
K. Matsumura, H. Shimadzu, N. Hashimoto. Chem. Pharm. Bull. 29,
3181 (1981).
249. M.J. Robins,
S.R. Naik. J. Am. Chem. Soc. 93, 5277 (1971).
250. M.J. Robins,
S.R. Naik. J. Chem. Soc., Chem. Commun. 18 (1972).
251. D.H.R.
Barton, R.H. Hesse, H.T. Toh, M.M. Pechet. J. Org. Chem. 37,
329 (1972).
252. D.H.R.
Barton, W.A. Bubb, R.H. Hesse, M.M. Pechet. J. Chem. Soc., Perkin
Trans, I, 2095 (1974).
253. K.
Bischofberger, A.J. Brink, A. Jordaan. J. Chem. Soc., Perkin Trans, I.
2457 (1975).
254. C.G.
Butchard, P.W. Kent. Tetrahedron. 35, 2551 (1979).
255. Pat 2149504
Germany (1970), Chem. Abstr. 72, 126674 (1972).
256. K. Felczak,
T. Kulikowski, J.A. Vilpo, J. Giziewick, D. Shugar. Nucleosides
Nucleotides. 6, 257 (1987).
257. W.H. Dawson,
R.B. Dunlap. J. Labell. Comp. Radiopharm. 16, 335
(1979).
258. D.H.R.
Barton, R.H. Hesse, G.P. Jackmann, M.M. Pechet. J. Chem. Soc., Perkin
Trans, I. 2604 (1977).
259. D.H.R.
Barton, R.H. Hesse, M.M. Pechet, H.T. Toh. J. Chem. Soc., Perkin Trans,
I. 712 (1980).
260. M. Saquin,
J.C. Adenis , C. Michand, J.J. Basselier. J. Fluorine Chem. 16,
506 (1980).
261.M.
Sequin, J.C. Adenis, C. Michand, J.J. Basselier. J. Fluorine Chem. 15,
201 (1980).
262. M. Sequin,
J.C. Adenis, C. Michand, J.J. Basselier. J. Fluorine Chem. 16,
37 (1980).
263. D.B. Denney,
D.Z. Denney, I.F. Hsu. J. Am. Chem. Soc. 95, 4064
(1973).
264. D.B. Denney,
D.Z. Denney, I.F. Hsu. J. Am. Chem. Soc. 95, 8191
(1973).
265. J.
Kollonitsch, S. Marburg, L.M. Perkins.J. Org. Chem. 47,
3107 (1976).
266. R.S.
Michalak, J.C. Martin. J. Am. Chem. Soc. 104, 1683
(1982).
267. N.I.Death,
D.Z. Denney. Phosphorus. 3, 205 (1974).
268. J.
Kollonisch, L. Barash, F.M. Kahan, H. Kropp. Nature. 243,
346 (1973).
269. J.
Kollonisch, L. Barash. J. Am. Chem. Soc. 98, 5591
(1976).
270. J. Kollonisch. Isr.
J. Chem. 17, 53 (1978).
271. C. Fischer,
K. Neubert, J. Steinbach. Forschungszent. Rossendorf. [Ber.]FZR
(FZR-200) 177 (1997); Chem.Abstr. 128, 229898h (1998).
272. Patent US 3687943,
1972.
273. D.H.R.
Barton, J. Loughborough Uni. Technol. Chem. Soc. 7, 37 (1969).
274. D.H.R.
Barton, J. Am. Chem. Soc. 98, 3036
(1976).
275. Patent GB 1531135,
1978.
276. S. Rozen, Y.
Manahem. Tetrahedron Lett. 725 (1979).
277. M.R. Bryce,
R.D. Chambers, S.T. Mullins. J. Fluorine Chem. 26, 533
(1984).
278. C. Corvaja,
F. Cremonese, W. Navarrini, C. Tonellic, V. Tortelli. Tetrahedron Lett. 36,3543
(1995).
279. F. Conti, C.
Corvaja, F. Cremonese, W. Navarrini, C. Tortelli. J. Chem. Soc.,
Fataday Trans. 91, 3813 (1995).
280. R.C. Thompson,
E.H. Appelman, J.C. Sullivan. Inorg. Chem. 16, 2921
(1977).
281. E.H.
Appelman, R.C. Thompson, A.G. Engelkemeir. Inorg. Chem. 18,
909 (1979).
282. E.H.
Appelman, R.C. Thompson. J. Am. Chem. Soc. 106, 4167
(1984).
283. F. Conti, C.
Corvaja, F. Cremonese. J. Chem. Soc., Faraday Trans.91, 3813 (1995); Chem.
Abstr. 124, 116550n (1996).
284. W. Navarini,
A. Russo, V. Tortelli. J. Org. Chem. 60, 6441 (1995).
285. K.S. Chen,
P.J. Krusic, J.K. Kochi. J. Phys. Chem. 78, 2030
(1974).
286. I.H. Helson,
S.W. Mao, J.K. Kochi. J. Am. Chem. Soc. 97, 335 (1975).
287.J.
Gzarnowskii J. Et al. J. Chem. Phys. Lett., 218, 29
(1994).
288. J.
Chem. Soc., Faraday Trans 2. 85, 1425 (1989).
289. D.H.R.
Barton, R.H. Hesse, G.P. Jackman, L. Ogunkoya, M.M. Pechet. J. Chem.
Soc., Perkin Trans. 1. 739 (1974).
290. J.B. Levy,
D.M. Sterling. J. Org. Chem. 50, 5615 (1985).
291. T.H.
Appelman.Inorg. Synth. 24, 22 (1986).
292. V.N. Solkan, A.A. Fainzilberg. Zhurn. Org. Khimii. 32, 977 (1996).
293. S. Miertus,
J. Tomasi. Chem. Phys. 55, 117 (1981).