Received: март 2014

Структурные свойства, Теория функционала плотности (DFT), расчёт зарядов NBO для С₁₈H₁₀F₁₁BrN₄O

Shima Rahmani^{*,1}, Shahriar Ghammami², Amir Lashgari²

¹Department of Chemistry, Faculty of Science, Azad University unit Of Takestan, Takestan, Iran.

²Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.

*Corresponding Author E-mail: <u>lkiu2014@yahoo.com</u>

Аннотация. Результаты вычислений B3LYP/LANL2DZ показали некоторые величины длины связей и углов для C₁₈H₁₀F₁₁BrN₄O. в данной статье оптимизированные геометрии и частоты стационарных точек нового вещества с химической формулой C₁₈H₁₀F₁₁BrN₄O вычислены с помощью методов DFT с базовым набором 6-311 и LANL2DZ.. ЯМР спектры C₁₈H₁₀F₁₁BrN₄O вычислялись с помощью методов DFT (B3LYP) с базовыми наборами LANL2DZ.

Ключевые слова: Электронная структура, фторное соединение, вычисления DFT , ЯМР, вибрационный анализ.

Введение

Fluorous chemistry - это относительно новый термин, который подразумевает использование перфторированных соединений или перфторированных растворителей для того, чтобы упростить извлечение катализаторов или реакционных продуктов. Наличие перфторированной группы придает соединению уникальные физические свойства, в первую очередь способность растворяться в перфторорганических растворителях.

Молекулы таких соединений имеют органический фрагмент и сильно фторированный фрагмент. В идеале, органический фрагмент управляет реакционной способностью а фторированный фрагмент позволяет контролировать выделение таких соединений. Данныее свойства моутт быть полезными для органического синтеза и методов разделения, таких как экстракция твердой фазы. [1] Слово «Fluorous» относительное новое, но уже завоевало общее признание. В качестве прилагательного «Fluorous» относят к сильно фторированным насыщенным органическим материалам, молекулам или молекулярным фрагментам. Историю появления и развития нового термина см. [2].

Такие технологии (fluorous technologies) повзоляют проводить процессы с высокой скоростью.

[3-5] .

Одно из таких соединений рассмотрено в настоящей статье.

Структура соединения оптимизирована с использованием метода DFT (B3LYP) с базисными наборами LANL2DZ с помощью программы Gaussian 09w [6]. Методы теории функциональной плотности использовались для определения оптимизированных структур C₁₈H₁₀F₁₁BrN₄O. Первоначальные вычисления выполнялись на уровне DFT и использовались базисные наборы LANL2DZ. Локальные минимумы были получены с помощью полной геометрической оптимизации [7].

РАСЧЕТЫ

Оптимизированные структурные параметры использовались при вычислении вибрационной частоты на уровне DFT, чтобы характеризировать все стационарные точки как минимальные. Все компьютерные вычисления проводились с использованием программы Gaussian 09w. Гармонические вибрационные частоты (v) в cm⁻¹ и инфракрасные интенсивности (int) в километрах на моль всех соединений выполнялись на том же уровне на соответствующих полностью оптимизированных измерениях. Молекулярные геометрии минимума энергии были обнаружены минимизацией энергии в соответствие со всеми геометрическими координатами без налагания любых симметрических ограничений.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Молекулярные Свойства

Структуры соединений показаны на Рис.1. Все вычисления выполнены с помощью компьютерной программы Gaussian 09w.

Рис 1. ТСтруктура молекулы C₁₈H₁₀F₁₁BrN₄O.

Теоретические вычисления связей и углов соединения определялись оптимизацией геометрии (измерений) (Таблица 1). Вычисленные гибридизации NBO показаны в Таблице 2. Результаты вычислений B3LYP/ LANL2DZ показали, что величины длины связи (C5-Br10) для C₁₈H₁₀F₁₁BrN₄O - 1.90 Å соответственно и величины длины связи (N12-N13) для C₁₈H₁₀F₁₁BrN₄O

- 1.39 Å соответственно.

Вычисленные гибридизации NBO - это существенные параметры нашего исследования. Структура соединения была оптимизирована с помощью метода DFT (B3LYP) с базовыми наборами LANL2DZ с использованием программы Gaussian 09w. Методы теории функциональной плотности применялись для определения оптимизированных структур C₁₈H₁₀F₁₁BrN₄O (Таблица 1, Рисунок 1). Эти естественные локализованные наборы являются промежуточными звеньями между базисными атомными орбиталями (AO) и молекулярными орбиталями (MO): атомная орбиталь NAO NHO NBO NLMO Moлекулярная орбиталь, Естественная (локализованная) орбиталь использовались в вычислительной химии для вычисления распределения электронной плотности в атомах и в связях между атомами.

Угол (°)	Связь	Длина (Å)	Связь
120.04	Br10-C5-C4	1.90	C5-Br10
120.30	C11-N12-N13	1.29	C11-N12
120.04	N14-C15-C21	1.39	N12-N13
119.94	H23-C17-C18	1.25	C15-O16
119.95	C20-N19-C18	1.33	C21-N22
109.32	F37-C29-C30	1.34	C32-F43
140.49	F43-C32-F45	1.34	C28-F35

Table 1. Геометрические параметры $C_{18}H_{10}F_{11}BrN_4O$ некоторых длин связей (Å)и углов (°).

NBO Исследование (Орбиталь естественной связи) структур

Вычисленные гибридизации NBO - это существенные параметры нашего исследования. Структура соединения была оптимизирована с помощью метода DFT (B3LYP) с базовыми использованием LANL2DZ Gaussian Методы наборами С программы 09w. теории функциональной плотности применялись для определения оптимизированных структур С₁₈Н₁₀F₁₁BrN₄O (Таблица 1, Рисунок 1). Эти естественные локализованные наборы являются промежуточными звеньями между базисными атомными орбиталями (АО) и молекулярными орбиталями (MO): атомная орбиталь \rightarrow NAO \rightarrow NHO \rightarrow NBO \rightarrow NLMO \rightarrow Молекулярная орбиталь, Естественная (локализованная) орбиталь использовались в вычислительной химии для вычисления распределения электронной плотности в атомах и в связях между атомами.

С помощью программы способной вычислять NBOs, можно найти оптимальные структуры связи [8]. Оптимальная структура Льюиса может определяться как структура с максимальным количеством электронного заряда на орбиталях Льюиса (Заряд Льюиса) [9].

Низкий электронный заряд на орбиталях Льюиса указывает на наличие сильного влияния электронной делокализации. В структурах резонанса могут существовать главные и второстепенные структуры. Например, для амидов вычисления NBO показывают, что структура с двойной связью карбонила доминирует в структуре Льюиса. Однако, в вычислениях NBO «ковалентно-ионного резонанса» не требуется включать эффекты полярности связей в структуры резонанса [10]. Это идентично другим современным методам теории валентных связей.

Орбитали естественной связи (NBOs) – это локализованные орбитали с несколькими центрами, которые описывают подобные Льюисовским схемы поведения молекулярных связей пар электронов в оптимально компактной форме. Более точно орбитали естественной связи NBOs – это орто-нормальный набор локализованных орбиталей «максимальной занятости», чьи ведущие N/2 члены (или N члены в случае незамкнутой оболочки) дают наиболее точное возможное описание типа Льюисовского полной плотности N-электрона. Этот анализ выполнен с помощью проверки всех возможных взаимодействий между «заполненными» (донорными) Льюисовского типа NBOs и «пустыми» (акцепторными) не-льюисовскими NBOs, и с помощь оценки их энергетической значимости теорией пертуберации второго порядка. Так как эти взаимодействия приводят к передаче занятости от локализованных NBOs идеализированной структуры Льюиса к пустым нельюисовким орбиталям (и таким образом, к отправлениям от описания идеализированной структуры Льюиса), они называются коррекцией «делокализации» естественной структуры Льюиса нулевого порядка.

Естественные заряды были вычислены с помощью модуля естественной орбитали, вставленного в программу Gaussian 09w. Данные количества получены из анализа популяции (занятости) NBO. Последний обеспечивает картину орбитали, которая ближе к классической структуре Льюиса. Анализ NBO затрагивающий гибридизации избранных связей вычисляли методом B3LYP с базовым набором LANL2DZ у (Табл. 2).

Связь	Атом	B3LYP
C-C	C1-C2	S ¹ P ^{1.81} S ¹ P ^{1.94}
C-F	C28-F36	S ¹ P ^{3.22} ,S ¹ P ^{2.67}
С-Н	C2-H7	S ¹ P ⁰ ,S ¹ P ^{2.50}
C-Br	C5-Br10	S ¹ P ^{3.71} ,S ¹ P ^{6.34}
C-N	C17-N22	S ¹ P ^{2.25} ,S ¹ P ^{1.83}

Таблица 2. NBO рассчитанные гибридизации для $C_{18}H_{10}F_{11}BrN_4O$ (B3LYP/LANL2DZ).

Эти данные показывают, что существует гиперсопряжение электронов между лиганд атомами и центровым атомом металла. Данные сопряжения основываются на p-d π-связях. Вычисляемая гибридизация NBO для C₁₈H₁₀F₁₁BrN₄O демонстрирует, что все соединения обладают SP^X гибридизацией и непланарными конфигурациями. Тотальная гибридизация этих молекул – это SP^X, что подтверждается структурно. Число гибридизаций связей демонстрирует неравенство между углами центровых атомов (Табл. 2) показывающими искажение нормальных VSEPR структур и подтверждающими девиацию от VSEPR структур. (Рис. 1).

ИК спектр и спектр комбинационного рассеивания (Рамана)

В данной работе мы использовали компьютерную программу Gaussian 09w, способную получить инфракрасный спектр (Рисунок 2 и Таблица 3). Вычисление колебательных частот тесно связано с процедурой структурной оптимизации в практике исследования. Они используются для стимулирования инфракрасного и спектра комбинационного рассеивания. Спектр комбинационного рассеивания показан на Рисунке 3. Спектроскопия комбинационного рассеивания, вращательных и других низкочастотных моделей в системе [13]. Эффект комбинационного рассеивания света случается, когда свет ударяется о молекулу и взаимодействует с облаком электрона и связями этой молекулы.

Fig. 3. Раасчитанный Рамановский спектр $C_{18}H_{10}F_{11}BrN_4O$.

Таблица 3. DFT (B3LYP) with LANL2DZ level calculated vibrational frequencies of $C_{18}H_{10}F_{11}BrN_4O$ (cm⁻¹).

Ипсилон	Частота	ИК	Спектр Рамана
1700	273.49	173.49	108.75
700	6.41	1.67	44.66

400	96.71	14.79	6.45
900	1053.63	348.54	1109.55

Спектры ЯМР

ЯМР спектры C₁₈H₁₀F₁₁BrN₄O были рассчитаны методом DFT(B3LYP) с применением базового набора LANL2DZ. Спектры C¹³-ЯМР, H-ЯМР (ПМР) и F¹⁹-NMR представлены на Рисунках 4а-с.

Fig. 4. Рассчитанные А) С-ЯМР В) F-ЯМР С) Н-ЯМР спектры С₁₈H₁₀F₁₁BrN₄O Z.

Мы концентрируем внимание на этих двух орбиталях, так как они наиболее близки по энергии. Данные орбитали участвуют в химической реактивности на тесном уровне, так как они наиболее доступны для электрофилов и нуклеофилов соответственно. Другое главное изменение связано с граничными орбиталями, (HOMO) и *(LUMO) орбиталями [11-12].

НОМО (ВЗМО, высокоэнергетическая заселённая молекулярная орбиталь) представляет способность отдавать электрон, LUMO (низшая незанятая молекулярная орбиталь) в качестве акцептора электронов представляет способность получать электрон. Энергии НОМО и LUMO вычислялись с помощью метода B3LYP/LANL2DZ. Данная абсорбция электронов соответствует переходу от начального к первому возбужденному состоянию и, главным образом, описывается возбуждением одного электрона с высшей занятой молекулы или орбитали (LUMO), обе, т.е. высокоэнергетическая заселённая молекулярная орбиталь (HOMO) и низшая незанятая молекулярная орбиталь (LUMO) – это главные орбитали, принимающие участие в химической стабильности. Поэтому, в то время как энергия НОМО напрямую относится к потенциалу ионизации, энергия LUMO напрямую относится к электронному сродству. Энергетическая важным для стабильности структур. Дополнительно 3D схемы высших занятых молекулярных орбиталей (HOMOs) и низших незанятых молекулярных орбиталей (LUMOs) показаны на Рисунке 5.

 $E_{Lumo} = -0.080998$

E_{Homo}=-0.23056 a.u

∆E=0.14957 a.u

Рис 5. Граничные молекулярные орбитали для $C_{18}H_{10}F_{11}BrN_4O$ по теории LANL2DZ.

Распределение плотности электронов

Распределение полной плотности электронов – это физическое свойство молекул. Плотность электронов обычно показывается как сравнение определенной электронной плотности с предсказанной с помощью сферических моделей атомов, и она называется деформационной электронной плотностью. Полная электронная плотность вычислена с помощью теории функциональной плотности DFT (B3LYP)/ LANL2DZ. Контурные карты электронной плотности для C₁₈H₁₀F₁₁BrN₄O изображены на рисунке 6. Также дополнительно (Таблица 4) даны заряды атомов C₁₈H₁₀F₁₁BrN₄O, а структура атомных зарядов дана на рисунке 7.

Рис. 6. Карты электронной плотности для C₁₈H₁₀F₁₁BrN₄O рассчитанные с помощью DFT/LANL2DZ .

Рис. 7. Структура зарядов атомов $C_{18}H_{10}F_{11}BrN_4O$.

Atom	Заряд
C5	-2.292
Br10	0.918
N12	-0.079
N1	-0.302

Таблица 4. Зарядв ато	омов в C ₁₈ H ₁₀ F ₁₁ BrN ₄ O.
-----------------------	--

O16	0.255
F37	-0.212
F42	-2.102
H14	0.254

ЗАКЛЮЧЕНИЕ

В данной статье оптимизированные геометрии и частоты стационарной точки и пути минимальной энергии вычислены с помощью методов теории функциональной плотности DFT (B3LYP) с базисными наборами LANL2DZ. В данной статье инфракрасный спектр, спектр комбинационного рассеивания света и ЯМР спектры C₁₈H₁₀F₁₁BrN₄O получены с применением теоретических методов [14-17].

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Research Council of Imam Khomeini International University.

Список литературы

- 2. Gladysz, J. & Curran, D., "Fluorous chemistry: from biphasic catalysis to a parallel universe and beyond", Tetrahedron, 58, (2002), 3823-3825.
- 3. W.Zhang, Chem. Rev. 2004, 104, 2531.104, 2531.
- 4. Ellman, J., et al.J. Org. Chem. 1997, 62, 1242J. 1242
- 5. Zhang, W. "Fluorous Protecting Groups and Tags" in Handbook of Fluorous Chemistry Gladysz, J. A.; Curran, D. P.; Horvath, I. T. Eds. Wiley-VCH, 2004, pp222-2362.
- Frisch, M. J. Trucks, G. W. 1998. GASSIAN 98 (Revision A. 3) Gaussian Inc., Pittsburgh, PA, USA.
- 7. Ghammamy, Sh., K. Mehrani, Rostamzadehmansor, S. and Sahebalzamani, H. 2011. Density functional theory studies on the structure, vibrational spectra of three new tetrahalogenoferrate (III) complexes. Natural Science, 3, 683-688.
- 8. Weinhold, Frank. and R. Landis, Clark, 1964. Discovering Chemistry with Natural Bond Orbitals. New Jersey: John Wiley & Sons., Pp: 132-133. ISBN 978-1-118-22916-3.
- 9. Frank Weinhold and R. Clark, 2001. Natural bond Orbital and extensions of localized bonding concepts Chem Educ. Res. Pract. Eur., 2: 91-104.
- Gottimukkala Rambabu, Zeenat Fatima, Bandapalli Palakshi Reddy, Vijayapar Tthasarathi and Vijayakumar, 2000. Stereoelectronic Interactions in Cyclohexane, 1, 3-Dioxane, 1, 3-Oxathiane and 1,3-Dithiane: W-Effect, C-XTó C-H Interactions, Anomeric Effects What Is Really Important? J. Org. Chem., 65: 3910-3919.
- 11. Seidy and Shahriar Ghammamy, 2012. Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT) and Energies for the Halorganic Compounds Current World Environment, 7(2): 221-226.
- 12. Jursic, B.S., 2000. A B3LYP hybrid density functional theory study of structural properties, and energies heats of formation for silicon–hydroge compounds, Journal of Molecular Structure (Theochem), 497: 65-73.

- 13. Gardiner, D.J., 1989. Practical Raman spectroscopy. Springer-Verlag. ISBN 978-0-387-50254-0.
- Abou-Deif, M.H., M.A. Rashed, M.A.A. Sallam, E.A.H. Mostafa and W.A. Ramadan, 2013, Characterization of Twenty Wheat Varieties by ISSR Markers, Middle-East Journal of Scientific Research, 15(2): 168-175.
- 15. Kabiru Jinjiri Ringim, 2013. Understanding of Account Holder in Conventional Bank toward Islamic Banking Products, Middle-East Journal of Scientific Research, 15(2): 176-183.
- Muhammad Azam, Sallahuddin Hassan and Khairuzzaman, 2013. Corruption, Workers Remittances, Fdi and Economic Growth in Five South and South East Asian Countries: A Panel Data Approach Middle-East Journal of Scientific Research, 15(2): 184-190.
- 17. Lewis, D. F. V., C. Ioannides, and Parke, D. V. 1994. Interaction of a series of nitriles with the alcohol-inducible isoform of P450: computer analysis of structure- activity relationships. Xenobiotica, 24: 401-408.

Статья рекомендована к публикации членом редколлегии д.х.н. С.М. Игумновым